JEE MAIN - Mathematics (2020 - 9th January Evening Slot - No. 14)

A random variable X has the following probability distribution :

X: 1 2 3 4 5
P(X): K2 2K K 2K 5K2

Then P(X > 2) is equal to :
$${1 \over {6}}$$
$${7 \over {12}}$$
$${1 \over {36}}$$
$${23 \over {36}}$$

Explanation

$$\sum\limits_{i = 1}^5 {P(X)} $$ = 1

$$ \Rightarrow $$ K2 + 2K + K + 2K + 5K2 = 1

$$ \Rightarrow $$ 6K2 + 5K – 1 = 0

$$ \Rightarrow $$ (6K - 1)(k + 1) = 0

$$ \Rightarrow $$ K = $${1 \over 6}$$ and K = -1(rejected)

$$ \therefore $$ P(X $$ > $$ 2)

= K + 2K + 5K2

= $${1 \over 6} + {2 \over 6} + {5 \over {36}}$$

= $${{23} \over {36}}$$

Comments (0)

Advertisement