JEE MAIN - Mathematics (2020 - 9th January Evening Slot - No. 13)
If $$x = 2\sin \theta - \sin 2\theta $$ and $$y = 2\cos \theta - \cos 2\theta $$,
$$\theta \in \left[ {0,2\pi } \right]$$, then $${{{d^2}y} \over {d{x^2}}}$$ at $$\theta $$ = $$\pi $$ is :
$$\theta \in \left[ {0,2\pi } \right]$$, then $${{{d^2}y} \over {d{x^2}}}$$ at $$\theta $$ = $$\pi $$ is :
$${3 \over 8}$$
$${3 \over 2}$$
$${3 \over 4}$$
-$${3 \over 4}$$
Explanation
$$x = 2\sin \theta - \sin 2\theta $$
$$ \Rightarrow $$ $${{dx} \over {d\theta }}$$ = $$2\cos \theta - 2\cos 2\theta $$
$$y = 2\cos \theta - \cos 2\theta $$
$$ \Rightarrow $$ $${{dy} \over {d\theta }}$$ = –2sin$$\theta $$ + 2sin2$$\theta $$
$${{dy} \over {dx}} = {{{{dy} \over {d\theta }}} \over {{{dx} \over {d\theta }}}}$$ = $${{\sin 2\theta - \sin \theta } \over {\cos \theta - \cos 2\theta }}$$
This expression is simplified by recognizing that $\sin 2 \theta = 2\sin \theta \cos \theta$ and $\cos 2 \theta = 2\cos^2 \theta -1$, leading to the expression:
$$ \frac{dy}{dx} = \frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{3 \theta}{2}}{2 \sin \frac{\theta}{2} \cdot \sin \frac{3 \theta}{2}}=\cot \frac{3 \theta}{2}$$
This is the rate of change of y with respect to x, as a function of θ.
Next, we differentiate this function with respect to θ to find $\frac{d^2 y}{dx^2}$, yielding :
$$ \frac{d^2 y}{dx^2}=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \frac{d \theta}{d x}=-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2} \cdot \frac{d \theta}{d x}$$
Here, $\frac{d \theta}{d x}$ is the reciprocal of $\frac{dx}{d\theta}$, so the equation becomes :
$$ \frac{d^2 y}{dx^2}=\frac{-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2}}{2\left(\cos \theta-\cos2 \theta\right)}$$
Finally, we evaluate this expression at $\theta = \pi$, yielding :
$$ \frac{d^2 y}{dx^2}(\pi)=\frac{-3}{4(-1-1)}=\frac{3}{8}$$
Therefore, the correct answer is (A) $\frac{3}{8}$.
Alternate Method :
First, let's find the derivatives of x and y with respect to θ :
1) $$ \frac{dx}{d\theta} = 2\cos \theta - 2\cos 2\theta $$
2) $$ \frac{dy}{d\theta} = -2\sin \theta + 2\sin 2\theta $$
We know that $$ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} $$
So, we substitute 1) and 2) into this equation :
We have
$$\frac{dy}{dx} = \frac{-2\sin \theta + 2\sin 2\theta}{2\cos \theta - 2\cos 2\theta} = \frac{\sin 2\theta - \sin \theta}{\cos \theta - \cos 2\theta}$$
For simplification, let's denote the numerator as $$N = \sin 2\theta - \sin \theta$$ and the denominator as $$D = \cos \theta - \cos 2\theta$$.
We have to compute $$\frac{d}{d\theta}(\frac{dy}{dx})$$ which is $$\frac{d}{d\theta}(\frac{N}{D})$$.
We can use the quotient rule for differentiation, which states that if we have a function of the form $$\frac{u}{v}$$, then its derivative is given by $$\frac{vu' - uv'}{v^2}$$.
So here, $$N' = 2\cos 2\theta - \cos \theta$$ and $$D' = -\sin \theta + 2\sin 2\theta$$.
Applying the quotient rule :
$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{D N' - N D'}{D^2}$$
Substituting the expressions for $$N'$$, $$D'$$, $$N$$, and $$D$$ we get :
$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$
Now $$ \frac{d^2 y}{d x^2}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \times \frac{d \theta}{d x} $$
= $$\frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$$$ \times \frac{1}{(2 \cos \theta-2 \cos 2 \theta)} $$
$$ \begin{aligned} \left.\therefore \frac{d^2 y}{d x^2}\right|_{\theta=\pi} & =\frac{(-1-1)(2+1)-(0-0)(-0+0)}{2(-1-1)^3} \\\\ & =\frac{-2 \times 3}{-2 \times 8}=\frac{3}{8} \end{aligned} $$
$$ \Rightarrow $$ $${{dx} \over {d\theta }}$$ = $$2\cos \theta - 2\cos 2\theta $$
$$y = 2\cos \theta - \cos 2\theta $$
$$ \Rightarrow $$ $${{dy} \over {d\theta }}$$ = –2sin$$\theta $$ + 2sin2$$\theta $$
$${{dy} \over {dx}} = {{{{dy} \over {d\theta }}} \over {{{dx} \over {d\theta }}}}$$ = $${{\sin 2\theta - \sin \theta } \over {\cos \theta - \cos 2\theta }}$$
This expression is simplified by recognizing that $\sin 2 \theta = 2\sin \theta \cos \theta$ and $\cos 2 \theta = 2\cos^2 \theta -1$, leading to the expression:
$$ \frac{dy}{dx} = \frac{2 \sin \frac{\theta}{2} \cdot \cos \frac{3 \theta}{2}}{2 \sin \frac{\theta}{2} \cdot \sin \frac{3 \theta}{2}}=\cot \frac{3 \theta}{2}$$
This is the rate of change of y with respect to x, as a function of θ.
Next, we differentiate this function with respect to θ to find $\frac{d^2 y}{dx^2}$, yielding :
$$ \frac{d^2 y}{dx^2}=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \frac{d \theta}{d x}=-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2} \cdot \frac{d \theta}{d x}$$
Here, $\frac{d \theta}{d x}$ is the reciprocal of $\frac{dx}{d\theta}$, so the equation becomes :
$$ \frac{d^2 y}{dx^2}=\frac{-\frac{3}{2} \operatorname{cosec}^2 \frac{3 \theta}{2}}{2\left(\cos \theta-\cos2 \theta\right)}$$
Finally, we evaluate this expression at $\theta = \pi$, yielding :
$$ \frac{d^2 y}{dx^2}(\pi)=\frac{-3}{4(-1-1)}=\frac{3}{8}$$
Therefore, the correct answer is (A) $\frac{3}{8}$.
Alternate Method :
First, let's find the derivatives of x and y with respect to θ :
1) $$ \frac{dx}{d\theta} = 2\cos \theta - 2\cos 2\theta $$
2) $$ \frac{dy}{d\theta} = -2\sin \theta + 2\sin 2\theta $$
We know that $$ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} $$
So, we substitute 1) and 2) into this equation :
We have
$$\frac{dy}{dx} = \frac{-2\sin \theta + 2\sin 2\theta}{2\cos \theta - 2\cos 2\theta} = \frac{\sin 2\theta - \sin \theta}{\cos \theta - \cos 2\theta}$$
For simplification, let's denote the numerator as $$N = \sin 2\theta - \sin \theta$$ and the denominator as $$D = \cos \theta - \cos 2\theta$$.
We have to compute $$\frac{d}{d\theta}(\frac{dy}{dx})$$ which is $$\frac{d}{d\theta}(\frac{N}{D})$$.
We can use the quotient rule for differentiation, which states that if we have a function of the form $$\frac{u}{v}$$, then its derivative is given by $$\frac{vu' - uv'}{v^2}$$.
So here, $$N' = 2\cos 2\theta - \cos \theta$$ and $$D' = -\sin \theta + 2\sin 2\theta$$.
Applying the quotient rule :
$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{D N' - N D'}{D^2}$$
Substituting the expressions for $$N'$$, $$D'$$, $$N$$, and $$D$$ we get :
$$\frac{d}{d\theta}(\frac{dy}{dx}) = \frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$
Now $$ \frac{d^2 y}{d x^2}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d \theta}\left(\frac{d y}{d x}\right) \times \frac{d \theta}{d x} $$
= $$\frac{(\cos \theta - \cos 2\theta)(2\cos 2\theta - \cos \theta) - (\sin 2\theta - \sin \theta)(-\sin \theta + 2\sin 2\theta)}{(\cos \theta - \cos 2\theta)^2}$$$$ \times \frac{1}{(2 \cos \theta-2 \cos 2 \theta)} $$
$$ \begin{aligned} \left.\therefore \frac{d^2 y}{d x^2}\right|_{\theta=\pi} & =\frac{(-1-1)(2+1)-(0-0)(-0+0)}{2(-1-1)^3} \\\\ & =\frac{-2 \times 3}{-2 \times 8}=\frac{3}{8} \end{aligned} $$
Comments (0)
