JEE MAIN - Mathematics (2020 - 9th January Evening Slot - No. 11)

If $$x = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}{{\tan }^{2n}}\theta } $$ and $$y = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta } $$

for 0 < $$\theta $$ < $${\pi \over 4}$$, then :
x(1 + y) = 1
y(1 – x) = 1
y(1 + x) = 1
x(1 – y) = 1

Explanation

$$x = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}{{\tan }^{2n}}\theta } $$

= 1 – tan2$$\theta $$ + tan2 4$$\theta $$ + ...

= $${1 \over {1 + {{\tan }^2}\theta }}$$ = cos2 $$\theta $$ ....(1)

$$y = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta } $$

= 1 + cos2 $$\theta $$ + cos4 $$\theta $$ + cos6 $$\theta $$ + ....

= $${1 \over {1 - {{\cos }^2}\theta }}$$ = $${1 \over {{{\sin }^2}\theta }}$$

$$ \Rightarrow $$ sin2 $$\theta $$ = $${1 \over y}$$ ...(2)

Adding (1) and (2), we get,

x + $${1 \over y}$$ = sin2 $$\theta $$ + cos2 $$\theta $$

$$ \Rightarrow $$ x + $${1 \over y}$$ = 1

$$ \Rightarrow $$ y(1 – x) = 1

Comments (0)

Advertisement