JEE MAIN - Mathematics (2020 - 8th January Morning Slot - No. 17)

Let ƒ(x) = (sin(tan–1x) + sin(cot–1x))2 – 1, |x| > 1.
If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
$${{5\pi } \over 6}$$
$$ - {\pi \over 6}$$
$${\pi \over 3}$$
$${{2\pi } \over 3}$$

Explanation

Given ƒ(x) = (sin(tan–1x) + sin(cot–1x))2 – 1

= (sin(tan–1x) + sin($${\pi \over 2}$$ - tan–1x))2 – 1

= (sin(tan–1x) + cos(tan–1x))2 – 1

= sin2(tan–1x) + cos2(tan–1x) + 2sin(tan–1x)cos(tan–1x) + 1

= 1 + sin(2tan–1x) - 1

= sin(2tan–1x)

Also given $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$

Integrating both sides we get

y = $${1 \over 2}$$ sin-1 (f(x)) + C

= $${1 \over 2}$$ sin-1 (sin(2tan–1x)) + C

Given $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$ mean x = $$\sqrt 3 $$ and y = $${\pi \over 6}$$

$$ \therefore $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2tan–1$$\sqrt 3 $$)) + C

$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2$$ \times $$$${\pi \over 3}$$)) + C

$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 ($${{\sqrt 3 } \over 2}$$) + C

$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ $$ \times $$ $${\pi \over 3}$$ + C

$$ \Rightarrow $$ C = 0

Now y($${ - \sqrt 3 }$$) means when x = $${ - \sqrt 3 }$$ then find y.

y = $${1 \over 2}$$ sin-1 (sin(2tan–1x))

= $${1 \over 2}$$ sin-1 (sin(2tan–1($${ - \sqrt 3 }$$)))

= $${1 \over 2}$$ sin-1 (sin(-2tan–1($${ \sqrt 3 }$$)))

= $${1 \over 2}$$ sin-1 (sin(-2$$ \times $$$${\pi \over 3}$$))

= $${1 \over 2}$$ sin-1 (-sin(2$$ \times $$$${\pi \over 3}$$))

= $${1 \over 2}$$ sin-1 (-$${{\sqrt 3 } \over 2}$$)

= $${1 \over 2}$$ $$ \times $$ -sin-1 ($${{\sqrt 3 } \over 2}$$)

= $${1 \over 2}$$ $$ \times $$ -$${\pi \over 3}$$

= -$${\pi \over 6}$$

Comments (0)

Advertisement