JEE MAIN - Mathematics (2020 - 8th January Morning Slot - No. 17)
Let ƒ(x) = (sin(tan–1x) + sin(cot–1x))2 – 1, |x| > 1.
If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
$${{5\pi } \over 6}$$
$$ - {\pi \over 6}$$
$${\pi \over 3}$$
$${{2\pi } \over 3}$$
Explanation
Given ƒ(x) = (sin(tan–1x) + sin(cot–1x))2 – 1
= (sin(tan–1x) + sin($${\pi \over 2}$$ - tan–1x))2 – 1
= (sin(tan–1x) + cos(tan–1x))2 – 1
= sin2(tan–1x) + cos2(tan–1x) + 2sin(tan–1x)cos(tan–1x) + 1
= 1 + sin(2tan–1x) - 1
= sin(2tan–1x)
Also given $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$
Integrating both sides we get
y = $${1 \over 2}$$ sin-1 (f(x)) + C
= $${1 \over 2}$$ sin-1 (sin(2tan–1x)) + C
Given $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$ mean x = $$\sqrt 3 $$ and y = $${\pi \over 6}$$
$$ \therefore $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2tan–1$$\sqrt 3 $$)) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2$$ \times $$$${\pi \over 3}$$)) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 ($${{\sqrt 3 } \over 2}$$) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ $$ \times $$ $${\pi \over 3}$$ + C
$$ \Rightarrow $$ C = 0
Now y($${ - \sqrt 3 }$$) means when x = $${ - \sqrt 3 }$$ then find y.
y = $${1 \over 2}$$ sin-1 (sin(2tan–1x))
= $${1 \over 2}$$ sin-1 (sin(2tan–1($${ - \sqrt 3 }$$)))
= $${1 \over 2}$$ sin-1 (sin(-2tan–1($${ \sqrt 3 }$$)))
= $${1 \over 2}$$ sin-1 (sin(-2$$ \times $$$${\pi \over 3}$$))
= $${1 \over 2}$$ sin-1 (-sin(2$$ \times $$$${\pi \over 3}$$))
= $${1 \over 2}$$ sin-1 (-$${{\sqrt 3 } \over 2}$$)
= $${1 \over 2}$$ $$ \times $$ -sin-1 ($${{\sqrt 3 } \over 2}$$)
= $${1 \over 2}$$ $$ \times $$ -$${\pi \over 3}$$
= -$${\pi \over 6}$$
= (sin(tan–1x) + sin($${\pi \over 2}$$ - tan–1x))2 – 1
= (sin(tan–1x) + cos(tan–1x))2 – 1
= sin2(tan–1x) + cos2(tan–1x) + 2sin(tan–1x)cos(tan–1x) + 1
= 1 + sin(2tan–1x) - 1
= sin(2tan–1x)
Also given $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$
Integrating both sides we get
y = $${1 \over 2}$$ sin-1 (f(x)) + C
= $${1 \over 2}$$ sin-1 (sin(2tan–1x)) + C
Given $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$ mean x = $$\sqrt 3 $$ and y = $${\pi \over 6}$$
$$ \therefore $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2tan–1$$\sqrt 3 $$)) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 (sin(2$$ \times $$$${\pi \over 3}$$)) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ sin-1 ($${{\sqrt 3 } \over 2}$$) + C
$$ \Rightarrow $$ $${\pi \over 6}$$ = $${1 \over 2}$$ $$ \times $$ $${\pi \over 3}$$ + C
$$ \Rightarrow $$ C = 0
Now y($${ - \sqrt 3 }$$) means when x = $${ - \sqrt 3 }$$ then find y.
y = $${1 \over 2}$$ sin-1 (sin(2tan–1x))
= $${1 \over 2}$$ sin-1 (sin(2tan–1($${ - \sqrt 3 }$$)))
= $${1 \over 2}$$ sin-1 (sin(-2tan–1($${ \sqrt 3 }$$)))
= $${1 \over 2}$$ sin-1 (sin(-2$$ \times $$$${\pi \over 3}$$))
= $${1 \over 2}$$ sin-1 (-sin(2$$ \times $$$${\pi \over 3}$$))
= $${1 \over 2}$$ sin-1 (-$${{\sqrt 3 } \over 2}$$)
= $${1 \over 2}$$ $$ \times $$ -sin-1 ($${{\sqrt 3 } \over 2}$$)
= $${1 \over 2}$$ $$ \times $$ -$${\pi \over 3}$$
= -$${\pi \over 6}$$
Comments (0)
