JEE MAIN - Mathematics (2020 - 8th January Morning Slot - No. 15)

Let y = y(x) be a solution of the differential equation,

$$\sqrt {1 - {x^2}} {{dy} \over {dx}} + \sqrt {1 - {y^2}} = 0$$, |x| < 1.

If $$y\left( {{1 \over 2}} \right) = {{\sqrt 3 } \over 2}$$, then $$y\left( { - {1 \over {\sqrt 2 }}} \right)$$ is equal to :
$$ - {{\sqrt 3 } \over 2}$$
None of those
$${{1 \over {\sqrt 2 }}}$$
$$-{{1 \over {\sqrt 2 }}}$$

Explanation

Given $$\sqrt {1 - {x^2}} {{dy} \over {dx}} + \sqrt {1 - {y^2}} = 0$$

$$ \Rightarrow $$ $${{dy} \over {dx}} = - {{\sqrt {1 - {y^2}} } \over {\sqrt {1 - {x^2}} }}$$

$$ \Rightarrow $$ $${{dy} \over {\sqrt {1 - {y^2}} }} + {{dx} \over {\sqrt {1 - {x^2}} }} = 0$$

$$ \Rightarrow $$ sin-1 y + sin-1 x = c

Given that $$y\left( {{1 \over 2}} \right) = {{\sqrt 3 } \over 2}$$

So when x = $${1 \over 2}$$ then y = $${{\sqrt 3 } \over 2}$$

$$ \therefore $$ sin-1 $${{\sqrt 3 } \over 2}$$ + sin-1 $${1 \over 2}$$ = c

$$ \Rightarrow $$ c = $${\pi \over 3}$$ + $${\pi \over 6}$$ = $${\pi \over 2}$$

So sin-1 y + sin-1 x = $${\pi \over 2}$$

$$ \Rightarrow $$ sin-1 y = $${\pi \over 2}$$ - sin-1 x

$$ \Rightarrow $$ sin-1 y = cos-1 x

Now $$y\left( { - {1 \over {\sqrt 2 }}} \right)$$ means x = $$ - {1 \over {\sqrt 2 }}$$ and find y.

Putting x = $$ - {1 \over {\sqrt 2 }}$$

sin-1 y = cos-1 $$\left( { - {1 \over {\sqrt 2 }}} \right)$$ = $${{3\pi } \over 4}$$

y (at x = $$ - {1 \over {\sqrt 2 }}$$) = sin($${{3\pi } \over 4}$$) = $${{1 \over {\sqrt 2 }}}$$

Comments (0)

Advertisement