JEE MAIN - Mathematics (2020 - 8th January Morning Slot - No. 12)
For a > 0, let the curves C1 : y2 = ax and
C2 : x2 = ay intersect at origin O and a point P.
Let the line x = b (0 < b < a) intersect the chord
OP and the x-axis at points Q and R,
respectively. If the line x = b bisects the area
bounded by the curves, C1 and C2, and the area of
$$\Delta $$OQR = $${1 \over 2}$$, then 'a' satisfies the equation :
$$\Delta $$OQR = $${1 \over 2}$$, then 'a' satisfies the equation :
x6 – 12x3 + 4 = 0
x6 – 12x3 – 4 = 0
x6 + 6x3 – 4 = 0
x6 – 6x3 + 4 = 0
Explanation
_8th_January_Morning_Slot_en_12_1.png)
P : intersection point of y2 = ax and x2 = ay
$$ \Rightarrow $$ x4 = a2 y2
$$ \Rightarrow $$ x4 = a2ax
$$ \Rightarrow $$ x = a, y = a
$$ \therefore $$ Point P : (a, a)
Line OP : y = x
$$ \Rightarrow $$ Point Q = (b, b)
Area $$\Delta $$OQR = $${1 \over 2}$$
$$ \Rightarrow $$ $${1 \over 2} \times b \times b$$ = $${1 \over 2}$$
$$ \Rightarrow $$ b = 1
As line x = b bisect the area between curve
$$ \therefore $$ $${1 \over 2}\int\limits_0^a {\left( {\sqrt {ax} - {{{x^2}} \over a}} \right)} dx$$ = $$\int\limits_0^1 {\left( {\sqrt {ax} - {{{x^2}} \over a}} \right)} dx$$
$$ \Rightarrow $$ $$\left[ {{1 \over 2}\sqrt a {x^{{3 \over 2}}} \times {2 \over 3} - {1 \over 2}{{{x^3}} \over {3a}}} \right]_0^a$$ = $$\left[ {\sqrt a {x^{{3 \over 2}}} \times {2 \over 3} - {{{x^3}} \over {3a}}} \right]_0^1$$
$$ \Rightarrow $$ $${{{a^2}} \over 3} - {1 \over 2}{{{a^2}} \over 3}$$ - 0 = $${{2\sqrt a } \over 3} - {1 \over {3a}}$$ - 0
$$ \Rightarrow $$ $${{{a^2}} \over 2} + {1 \over a} = 2\sqrt a $$
$$ \Rightarrow $$ $${a^3} + 2 = 4a\sqrt a $$
Squareing both sides, we get
$$ \Rightarrow $$ $${a^6} + 4{a^3} + 4 = 16{a^3}$$
$$ \Rightarrow $$ $${a^6} - 12{a^3} + 4 = $$ 0
Hence $$a$$ satisfy x6 – 12x3 + 4 = 0.
Comments (0)
