JEE MAIN - Mathematics (2020 - 8th January Evening Slot - No. 7)

Let $$\alpha = {{ - 1 + i\sqrt 3 } \over 2}$$.
If $$a = \left( {1 + \alpha } \right)\sum\limits_{k = 0}^{100} {{\alpha ^{2k}}} $$ and
$$b = \sum\limits_{k = 0}^{100} {{\alpha ^{3k}}} $$, then a and b are the roots of the quadratic equation :
x2 + 101x + 100 = 0
x2 + 102x + 101 = 0
x2 – 102x + 101 = 0
x2 – 101x + 100 = 0

Explanation

$$\alpha = {{ - 1 + i\sqrt 3 } \over 2}$$ = $$\omega $$

$$a = \left( {1 + \alpha } \right)\sum\limits_{k = 0}^{100} {{\alpha ^{2k}}} $$

= $$\left( {1 + \omega } \right)\sum\limits_{k = 0}^{100} {{\omega ^{2k}}} $$

= $$\left( {1 + \omega } \right){{1\left( {1 - {{\left( {{\omega ^2}} \right)}^{101}}} \right)} \over {1 - {\omega ^2}}}$$

= $${{1 - {\omega ^{202}}} \over {1 - \omega }}$$

= $${{1 - \omega } \over {1 - \omega }}$$ = 1

$$b = \sum\limits_{k = 0}^{100} {{\alpha ^{3k}}} $$

= $$\sum\limits_{k = 0}^{100} {{\omega ^{3k}}} $$

= 101 [as $${\omega ^3}$$ = 1]

$$ \therefore $$ roots are 101 and 1

Then equation is = x2 – 102x + 101 = 0

Comments (0)

Advertisement