JEE MAIN - Mathematics (2020 - 8th January Evening Slot - No. 17)

Let $$\overrightarrow a = \widehat i - 2\widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ be two vectors. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow a $$ and $$\overrightarrow c .\overrightarrow a = 0$$, then $$\overrightarrow c .\overrightarrow b $$ is equal to
$$ - {1 \over 2}$$
$$ - {3 \over 2}$$
$${1 \over 2}$$
-1

Explanation

$$\overrightarrow a = \widehat i - 2\widehat j + \widehat k$$

$$\overrightarrow b = \widehat i - \widehat j + \widehat k$$

$$\left| {\overrightarrow a } \right|$$ = $$\sqrt 6 $$, $$\left| {\overrightarrow b } \right|$$ = $$\sqrt 3 $$

and $${\overrightarrow a .\overrightarrow b }$$ = 4

Given $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow a $$

$$ \Rightarrow $$ $${\left( {\overrightarrow b \times \overrightarrow c } \right)}$$ - $${\left( {\overrightarrow b \times \overrightarrow a } \right)}$$ = 0

$$ \Rightarrow $$ $${\overrightarrow b \times \left( {\overrightarrow c - \overrightarrow a } \right)}$$ = 0

$$ \therefore $$ $${\overrightarrow b \parallel \left( {\overrightarrow c - \overrightarrow a } \right)}$$

$$ \Rightarrow $$ $${\left( {\overrightarrow c - \overrightarrow a } \right) = \lambda \overrightarrow b }$$

$$ \Rightarrow $$ $${\overrightarrow c = \overrightarrow a + \lambda \overrightarrow b }$$

$$ \Rightarrow $$ $${\overrightarrow c .\overrightarrow a = \overrightarrow a .\overrightarrow a + \lambda \overrightarrow a .\overrightarrow b }$$

$$ \Rightarrow $$ 0 = $${{{\left| {\overrightarrow a } \right|}^2} + \lambda \left( {\overrightarrow a .\overrightarrow b } \right)}$$

$$ \Rightarrow $$ $$\lambda $$ = $${{{ - {{\left| {\overrightarrow a } \right|}^2}} \over {\overrightarrow a .\overrightarrow b }}}$$ = $${{ - 6} \over 4} = - {3 \over 2}$$

$$ \therefore $$ $$\overrightarrow c $$ = $${\overrightarrow a - {3 \over 2}\overrightarrow b }$$

$$ \Rightarrow $$ $$\overrightarrow c $$ = ($$\widehat i - 2\widehat j + \widehat k$$) - $${3 \over 2}$$($$\widehat i - \widehat j + \widehat k$$)

$$ \Rightarrow $$ $$\overrightarrow c $$ = $$ - {1 \over 2}\left( {\widehat i + \widehat j + \widehat k} \right)$$

$$ \therefore $$ $$\overrightarrow c .\overrightarrow b $$ = $$ - {1 \over 2}\left( {\widehat i + \widehat j + \widehat k} \right)$$($$\widehat i - \widehat j + \widehat k$$)

$$ \therefore $$ $$\overrightarrow c .\overrightarrow b $$ = $$ - {1 \over 2}$$

Comments (0)

Advertisement