JEE MAIN - Mathematics (2020 - 8th January Evening Slot - No. 16)

The area (in sq. units) of the region

{(x,y) $$ \in $$ R2 : x2 $$ \le $$ y $$ \le $$ 3 – 2x}, is :
$${{34} \over 3}$$
$${{29} \over 3}$$
$${{31} \over 3}$$
$${{32} \over 3}$$

Explanation

JEE Main 2020 (Online) 8th January Evening Slot Mathematics - Area Under The Curves Question 105 English Explanation

x2 $$ \le $$ y $$ \le $$ – 2x + 3

$$ \Rightarrow $$ x2 = – 2x + 3

$$ \Rightarrow $$ x2 + 2x – 3 = 0

$$ \Rightarrow $$ (x + 3) (x – 1) = 0

$$ \Rightarrow $$ x = – 3, x = 1

Area = $$\int\limits_{ - 3}^1 {\left( { - 2x + 3 - {x^2}} \right)dx} $$

= $$\left( { - {x^2} + 3x - {{{x^3}} \over 3}} \right)_{ - 3}^1$$

= $$\left( { - 1 + 3 - {1 \over 3} + 9 + 9 - 9} \right)$$

= 11 - $${{1 \over 3}}$$

= $${{{32} \over 3}}$$ sq. unit

Comments (0)

Advertisement