JEE MAIN - Mathematics (2020 - 8th January Evening Slot - No. 11)

If $$\alpha $$ and $$\beta $$ be the coefficients of x4 and x2 respectively in the expansion of
$${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$, then
$$\alpha + \beta = 60$$
$$\alpha - \beta = 60$$
$$\alpha + \beta = -30$$
$$\alpha - \beta = -132$$

Explanation

(x+a)n + (x – a)n = 2(T1 + T3 + T5 +.....)

$${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$

= 2[T1 + T3 + T5 + T7 ]

= 2[6C0 x6 + 6C2 x4(x2 – 1) + 6C4 x2(x2 –1)2 + 6C6 x0(x2–1)3]

= 2[x6+ 15(x6 – x4) + 15x2 (x4 + 1 –2x2) + (x6 – 3x4 +3x2 –1)]

= 2[x6(2 + 15 + 15 + 1) + x4(–15 – 30 –3) + x2(15 + 3)]

Coefficient of x4 = $$\alpha $$ = -96

And coefficient of x2 = $$\beta $$ = 36

$$ \therefore $$ $$\alpha - \beta = - 96 - 36 = -132$$

Comments (0)

Advertisement