JEE MAIN - Mathematics (2020 - 8th January Evening Slot - No. 1)
Let ƒ(x) be a polynomial of degree 3 such that
ƒ(–1) = 10, ƒ(1) = –6, ƒ(x) has a critical point
at x = –1 and ƒ'(x) has a critical point at x = 1.
Then ƒ(x) has a local minima at x = _______.
Answer
3
Explanation
Let f(x) = ax3
+ bx2
+ cx + d
Given f(-1) = 10, f(1) = -6
$$ \therefore $$ -a + b - c + d = 10 ....(i)
and a + b + c + d = -6 ......(ii)
adding (i) + (ii)
2(b + d) = 4
$$ \Rightarrow $$ b + d = 2 ....(iii)
f'(x) = 3ax2 + 2bx + c
Given f'(-1) = 0
$$ \Rightarrow $$ 3a - 2b + c = 0 .....(iv)
f"(x) = 6ax + 2b
Given f"(1) = 0
$$ \therefore $$ 6a + 2b = 0 ....(v)
$$ \Rightarrow $$ b = -3a
adding (iv) + (v), we get
9a + c = 0 ....(vi)
$$ \Rightarrow $$ $$9\left( {{{ - b} \over 3}} \right)$$ + c = 0
$$ \Rightarrow $$ c = 3b
f(x) = $${{{ - b} \over 3}{x^3}}$$ + bx2 + 3bx + (2 - b)
$$ \Rightarrow $$ f'(x) = -bx2 + 2bx + 3b
= -b(x2 - 2x - 3)
At maxima and minima f'(x) = 0
$$ \therefore $$ (x2 - 2x - 3) = 0
$$ \Rightarrow $$ (x - 3) (x + 1) = 0
x = 3, -1
As a + b + c + d = -6
$$ \Rightarrow $$ $${{{ - b} \over 3}}$$ + b + 3b + 2 - b = -6
$$ \Rightarrow $$ b = -3
$$ \therefore $$ f'(x) = 3(x2 - 2x - 3)
$$ \Rightarrow $$ f''(x) = 3(2x - 2)
At x = 3, f''(x) = 3(2.3 - 2) = 12 > 0
$$ \therefore $$ Minima at x = 3.
Given f(-1) = 10, f(1) = -6
$$ \therefore $$ -a + b - c + d = 10 ....(i)
and a + b + c + d = -6 ......(ii)
adding (i) + (ii)
2(b + d) = 4
$$ \Rightarrow $$ b + d = 2 ....(iii)
f'(x) = 3ax2 + 2bx + c
Given f'(-1) = 0
$$ \Rightarrow $$ 3a - 2b + c = 0 .....(iv)
f"(x) = 6ax + 2b
Given f"(1) = 0
$$ \therefore $$ 6a + 2b = 0 ....(v)
$$ \Rightarrow $$ b = -3a
adding (iv) + (v), we get
9a + c = 0 ....(vi)
$$ \Rightarrow $$ $$9\left( {{{ - b} \over 3}} \right)$$ + c = 0
$$ \Rightarrow $$ c = 3b
f(x) = $${{{ - b} \over 3}{x^3}}$$ + bx2 + 3bx + (2 - b)
$$ \Rightarrow $$ f'(x) = -bx2 + 2bx + 3b
= -b(x2 - 2x - 3)
At maxima and minima f'(x) = 0
$$ \therefore $$ (x2 - 2x - 3) = 0
$$ \Rightarrow $$ (x - 3) (x + 1) = 0
x = 3, -1
As a + b + c + d = -6
$$ \Rightarrow $$ $${{{ - b} \over 3}}$$ + b + 3b + 2 - b = -6
$$ \Rightarrow $$ b = -3
$$ \therefore $$ f'(x) = 3(x2 - 2x - 3)
$$ \Rightarrow $$ f''(x) = 3(2x - 2)
At x = 3, f''(x) = 3(2.3 - 2) = 12 > 0
$$ \therefore $$ Minima at x = 3.
Comments (0)
