JEE MAIN - Mathematics (2020 - 7th January Evening Slot - No. 16)

The area (in sq. units) of the region
{(x, y) $$ \in $$ R2 | 4x2 $$ \le $$ y $$ \le $$ 8x + 12} is :
$${{125} \over 3}$$
$${{128} \over 3}$$
$${{127} \over 3}$$
$${{124} \over 3}$$

Explanation

For point of intersection 4x2 = 8x + 12

$$ \Rightarrow $$ x2 - 2x - 3 = 0
$$ \Rightarrow $$ x = –1, 3 JEE Main 2020 (Online) 7th January Evening Slot Mathematics - Area Under The Curves Question 107 English Explanation

Required area = area of the shaded region

= $$\int\limits_{ - 1}^3 {\left( {8x + 12 - 4{x^2}} \right)dx} $$

= $$4\left[ {2.{{{x^2}} \over 2} + 3x - {{{x^3}} \over 3}} \right]_{ - 1}^3$$

= (36 + 36 – 36) – (4 – 12 + $${4 \over 3}$$)

= $${{128} \over 3}$$

Comments (0)

Advertisement