JEE MAIN - Mathematics (2020 - 6th September Morning Slot - No. 5)
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \right)\sin \left( {x - 1} \right)}}} \right)$$
is equal to 0
is equal to $${1 \over 2}$$
does not exist
is equal to $$ - {1 \over 2}$$
Explanation
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \right)\sin \left( {x - 1} \right)}}} \right)$$$$\left( {{0 \over 0}} \right)$$
Apply L Hospital Rule
= $$\mathop {\lim }\limits_{x \to 1} {{2\left( {x - 1} \right).{{\left( {x - 1} \right)}^2}\cos {{\left( {x - 1} \right)}^4} - 0} \over {\left( {x - 1} \right).\cos \left( {x - 1} \right) + \sin \left( {x - 1} \right)}}$$ $$\left( {{0 \over 0}} \right)$$
= $$\mathop {\lim }\limits_{x \to 1} {{2{{\left( {x - 1} \right)}^3}\cos {{\left( {x - 1} \right)}^4}} \over {\left( {x - 1} \right).\left[ {\cos \left( {x - 1} \right) + {{\sin \left( {x - 1} \right)} \over {\left( {x - 1} \right)}}} \right]}}$$
= $$\mathop {\lim }\limits_{x \to 1} {{2{{\left( {x - 1} \right)}^2}\cos {{\left( {x - 1} \right)}^4}} \over {\cos \left( {x - 1} \right) + {{\sin \left( {x - 1} \right)} \over {\left( {x - 1} \right)}}}}$$
on taking limit
= $${0 \over {1 + 1}}$$ = 0
Apply L Hospital Rule
= $$\mathop {\lim }\limits_{x \to 1} {{2\left( {x - 1} \right).{{\left( {x - 1} \right)}^2}\cos {{\left( {x - 1} \right)}^4} - 0} \over {\left( {x - 1} \right).\cos \left( {x - 1} \right) + \sin \left( {x - 1} \right)}}$$ $$\left( {{0 \over 0}} \right)$$
= $$\mathop {\lim }\limits_{x \to 1} {{2{{\left( {x - 1} \right)}^3}\cos {{\left( {x - 1} \right)}^4}} \over {\left( {x - 1} \right).\left[ {\cos \left( {x - 1} \right) + {{\sin \left( {x - 1} \right)} \over {\left( {x - 1} \right)}}} \right]}}$$
= $$\mathop {\lim }\limits_{x \to 1} {{2{{\left( {x - 1} \right)}^2}\cos {{\left( {x - 1} \right)}^4}} \over {\cos \left( {x - 1} \right) + {{\sin \left( {x - 1} \right)} \over {\left( {x - 1} \right)}}}}$$
on taking limit
= $${0 \over {1 + 1}}$$ = 0
Comments (0)
