JEE MAIN - Mathematics (2020 - 6th September Morning Slot - No. 3)

The region represented by
{z = x + iy $$ \in $$ C : |z| – Re(z) $$ \le $$ 1} is also given by the
inequality : {z = x + iy $$ \in $$ C : |z| – Re(z) $$ \le $$ 1}
y2 $$ \le $$ $$2\left( {x + {1 \over 2}} \right)$$
y2 $$ \le $$ $${x + {1 \over 2}}$$
y2 $$ \ge $$ 2(x + 1)
y2 $$ \ge $$ x + 1

Explanation

Given z = x + iy

|z| – Re(z) $$ \le $$ 1

$$ \Rightarrow $$ $$\sqrt {{x^2} + {y^2}} $$ - x $$ \le $$ 1

$$ \Rightarrow $$ $$\sqrt {{x^2} + {y^2}} $$ $$ \le $$ 1 + x

$$ \Rightarrow $$ x2 + y2 $$ \le $$ 1 + 2x + x2

$$ \Rightarrow $$ y2 $$ \le $$ 2x + 1

$$ \Rightarrow $$ y2 $$ \le $$ 2$$\left( {x + {1 \over 2}} \right)$$

Comments (0)

Advertisement