JEE MAIN - Mathematics (2020 - 6th September Morning Slot - No. 18)

Let m and M be respectively the minimum and maximum values of

$$\left| {\matrix{ {{{\cos }^2}x} & {1 + {{\sin }^2}x} & {\sin 2x} \cr {1 + {{\cos }^2}x} & {{{\sin }^2}x} & {\sin 2x} \cr {{{\cos }^2}x} & {{{\sin }^2}x} & {1 + \sin 2x} \cr } } \right|$$

Then the ordered pair (m, M) is equal to :
(–3, –1)
(–4, –1)
(1, 3)
(–3, 3)

Explanation

$$\left| {\matrix{ {{{\cos }^2}x} & {1 + {{\sin }^2}x} & {\sin 2x} \cr {1 + {{\cos }^2}x} & {{{\sin }^2}x} & {\sin 2x} \cr {{{\cos }^2}x} & {{{\sin }^2}x} & {1 + \sin 2x} \cr } } \right|$$

R1 $$ \to $$ R1 – R2, R2 $$ \to $$ R2 – R3

$$\left| {\matrix{ { - 1} & 1 & 0 \cr 1 & 0 & { - 1} \cr {{{\cos }^2}x} & {{{\sin }^2}x} & {1 + \sin 2x} \cr } } \right|$$

= –1(sin2 x) – 1(1 + sin2x + cos2 x)

= - sin2x - 2

$$ \therefore $$ minimum value when sin2x = 1

m = - 2 - 1 = -3

$$ \therefore $$ Maximum value when sin2x = –1

M = -2 + 1 = -1

$$ \therefore $$ (m, M) = (–3, –1)

Comments (0)

Advertisement