JEE MAIN - Mathematics (2020 - 6th September Evening Slot - No. 8)
The set of all real values of $$\lambda $$ for which the
function
$$f(x) = \left( {1 - {{\cos }^2}x} \right)\left( {\lambda + \sin x} \right),x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$
has exactly one maxima and exactly one minima, is :
$$f(x) = \left( {1 - {{\cos }^2}x} \right)\left( {\lambda + \sin x} \right),x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$
has exactly one maxima and exactly one minima, is :
$$\left( { - {3 \over 2},{3 \over 2}} \right) - \left\{ 0 \right\}$$
$$\left( { - {3 \over 2},{3 \over 2}} \right)$$
$$\left( { - {1 \over 2},{1 \over 2}} \right) - \left\{ 0 \right\}$$
$$\left( { - {1 \over 2},{1 \over 2}} \right)$$
Explanation
$$f(x) = \left( {1 - {{\cos }^2}x} \right)\left( {\lambda + \sin x} \right)$$
$$ \Rightarrow $$ f(x) = sin2 x($$\lambda $$ + sinx) ....(1)
$$ \therefore $$ f'(x) = 2sinx cosx ($$\lambda $$ +sinx) + sin2x (cosx)
$$ \Rightarrow $$ f'(x) = sin2x($${{2\lambda + 3\sin x} \over 2}$$)
For maixma and minima, f'(x) = 0
$$ \therefore $$ sin2x = 0 or 2$$\lambda $$ + 3sinx = 0
when sin2x = 0 $$ \Rightarrow $$ x = 0
or when 2$$\lambda $$ + 3sinx = 0
$$ \Rightarrow $$ sin x = $$ - {{2\lambda } \over 3}$$
As $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$
$$ \therefore $$ -1 < sinx < 1
$$ \Rightarrow $$ -1 < $$ - {{2\lambda } \over 3}$$ < 1
$$ \Rightarrow $$ $$ - {3 \over 2}$$ < $$\lambda $$ < $$ {3 \over 2}$$
$$ \therefore $$ $$\lambda $$ $$ \in $$ $$\left( { - {3 \over 2},{3 \over 2}} \right)$$ - {0}
Note : If $$\lambda $$ = 0 $$ \Rightarrow $$ f(x) = sin3x [from (1)]
Which is monotonic. so no maxima/minima.
$$ \Rightarrow $$ f(x) = sin2 x($$\lambda $$ + sinx) ....(1)
$$ \therefore $$ f'(x) = 2sinx cosx ($$\lambda $$ +sinx) + sin2x (cosx)
$$ \Rightarrow $$ f'(x) = sin2x($${{2\lambda + 3\sin x} \over 2}$$)
For maixma and minima, f'(x) = 0
$$ \therefore $$ sin2x = 0 or 2$$\lambda $$ + 3sinx = 0
when sin2x = 0 $$ \Rightarrow $$ x = 0
or when 2$$\lambda $$ + 3sinx = 0
$$ \Rightarrow $$ sin x = $$ - {{2\lambda } \over 3}$$
As $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$
$$ \therefore $$ -1 < sinx < 1
$$ \Rightarrow $$ -1 < $$ - {{2\lambda } \over 3}$$ < 1
$$ \Rightarrow $$ $$ - {3 \over 2}$$ < $$\lambda $$ < $$ {3 \over 2}$$
$$ \therefore $$ $$\lambda $$ $$ \in $$ $$\left( { - {3 \over 2},{3 \over 2}} \right)$$ - {0}
Note : If $$\lambda $$ = 0 $$ \Rightarrow $$ f(x) = sin3x [from (1)]
Which is monotonic. so no maxima/minima.
Comments (0)
