JEE MAIN - Mathematics (2020 - 6th September Evening Slot - No. 11)

If $$\overrightarrow x $$ and $$\overrightarrow y $$ be two non-zero vectors such that $$\left| {\overrightarrow x + \overrightarrow y } \right| = \left| {\overrightarrow x } \right|$$ and $${2\overrightarrow x + \lambda \overrightarrow y }$$ is perpendicular to $${\overrightarrow y }$$, then the value of $$\lambda $$ is _________ .
Answer
1

Explanation

$$\left| {\overrightarrow x + \overrightarrow y } \right| = \left| {\overrightarrow x } \right|$$
Squaring both sides we get

$${\left| {\overrightarrow x } \right|^2} + 2\overrightarrow x .\overrightarrow y + {\left| {\overrightarrow y } \right|^2} = {\left| {\overrightarrow x } \right|^2}$$

$$ \Rightarrow $$ $$2\overrightarrow x .\overrightarrow y + \overrightarrow y .\overrightarrow y $$ = 0 ....(1)

Given $${2\overrightarrow x + \lambda \overrightarrow y }$$ is perpendicular to $${\overrightarrow y }$$

$$ \therefore $$ $$\left( {2\overrightarrow x + \lambda \overrightarrow y } \right).\overrightarrow y $$ = 0

$$ \Rightarrow $$ $$2\overrightarrow x .\overrightarrow y + \lambda \overrightarrow y .\overrightarrow y $$ = 0 ....(2)

Comparing (1) & (2) we get, $$\lambda $$ = 1

Comments (0)

Advertisement