JEE MAIN - Mathematics (2020 - 6th September Evening Slot - No. 10)

Consider the data on x taking the values
0, 2, 4, 8,....., 2n with frequencies
nC0 , nC1 , nC2 ,...., nCn respectively. If the
mean of this data is $${{728} \over {{2^n}}}$$, then n is equal to _________ .
Answer
6

Explanation

Mean = $${{\sum {{x_1}.{f_1}} } \over {\sum {{f_1}} }}$$

= $${{0.{}^n{C_0} + 2.{}^n{C_1} + {2^2}.{}^n{C_2} + ... + {2^n}.{}^n{C_n}} \over {{}^n{C_0} + {}^n{C_1} + ... + {}^n{C_n}}}$$

We know,

(1 + x)n = $${{}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + ... + {}^n{C_n}{x^n}}$$ ...(1)

Put x = 2, at (1) we get
$$ \Rightarrow $$ 3n - 1 = $${2.{}^n{C_1} + {2^2}.{}^n{C_2} + ... + {2^n}.{}^n{C_n}}$$

And Putting x = 1 in (1), we get

2n = $${{}^n{C_0} + {}^n{C_1} + ... + {}^n{C_n}}$$

$$ \therefore $$ Mean = $${{{3^n} - 1} \over {{2^n}}}$$

According to question,

$${{{3^n} - 1} \over {{2^n}}}$$ = $${{728} \over {{2^n}}}$$

$$ \Rightarrow $$ 3n = 729

$$ \Rightarrow $$ n = 6

Comments (0)

Advertisement