JEE MAIN - Mathematics (2020 - 5th September Morning Slot - No. 18)

If S is the sum of the first 10 terms of the series

$${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

then tan(S) is equal to :
$${10 \over {11}}$$
$${5 \over {11}}$$
-$${6 \over {5}}$$
$${5 \over {6}}$$

Explanation

S = $${\tan ^{ - 1}}\left( {{1 \over 3}} \right) + {\tan ^{ - 1}}\left( {{1 \over 7}} \right) + {\tan ^{ - 1}}\left( {{1 \over {13}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {21}}} \right) + ....$$

= $${\tan ^{ - 1}}\left( {{1 \over {1 + 1 \times 2}}} \right) + {\tan ^{ - 1}}\left( {{1 \over {1 + 2 \times 3}}} \right) + ...$$

$$ \therefore $$ Tr = $${\tan ^{ - 1}}\left( {{1 \over {1 + r \times \left( {r + 1} \right)}}} \right)$$

= tan–1(r + 1) – tan–1r

$$ \therefore $$ T1 = tan–12 – tan–11

T2 = tan–13 – tan–12

T3 = tan–14 – tan–13
.
.
.

T10 = tan-111 – tan–110

$$ \therefore $$ S = tan–111 – tan–11 = $${\tan ^{ - 1}}\left( {{{11 - 1} \over {1 + 11}}} \right)$$

$$ \therefore $$ tan(S) = $$\tan \left( {{{\tan }^{ - 1}}\left( {{{11 - 1} \over {1 + 11}}} \right)} \right)$$

= $${{{11 - 1} \over {1 + 11}}}$$ = $${{10} \over {12}} = {5 \over 6}$$

Comments (0)

Advertisement