JEE MAIN - Mathematics (2020 - 5th September Morning Slot - No. 14)

If the four complex numbers $$z,\overline z ,\overline z - 2{\mathop{\rm Re}\nolimits} \left( {\overline z } \right)$$ and $$z-2Re(z)$$ represent the vertices of a square of side 4 units in the Argand plane, then $$|z|$$ is equal to :
4$$\sqrt 2 $$
4
2
2$$\sqrt 2 $$

Explanation

JEE Main 2020 (Online) 5th September Morning Slot Mathematics - Complex Numbers Question 117 English Explanation Let $$z = x + iy$$

Length of side = 4

$$AB = 4$$

$$|z - \overline z | = 4$$

$$|2y|\, = 4;$$$$ \Rightarrow $$ $$|y|\, = 2$$

$$BC = 4$$

$$ \Rightarrow $$ $$|\overline z - (\overline z - 2{\mathop{\rm Re}\nolimits} (\overline z )|\, = 4$$

$$ \Rightarrow $$ $$|2x|\, = 4;\,$$$$ \Rightarrow $$ $$|x|\, = 2$$

$$ \therefore $$ $$|z|\, = \,\sqrt {{x^2} + {y^2}} = \sqrt {4 + 4} = 2\sqrt 2 $$

Comments (0)

Advertisement