JEE MAIN - Mathematics (2020 - 5th September Evening Slot)

1
If the mean and the standard deviation of the
data 3, 5, 7, a, b are 5 and 2 respectively, then a and b are the roots of the equation :
Answer
(D)
x2 – 10x + 19 = 0
2
Let y = y(x) be the solution of the differential equation

cosx$${{dy} \over {dx}}$$ + 2ysinx = sin2x, x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$.

If y$$\left( {{\pi \over 3}} \right)$$ = 0, then y$$\left( {{\pi \over 4}} \right)$$ is equal to :
Answer
(B)
$${\sqrt 2 - 2}$$
3
If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is :
Answer
(D)
$${1 \over {26}}\left( {{3^{50}} - 1} \right)$$
4
The value of $${\left( {{{ - 1 + i\sqrt 3 } \over {1 - i}}} \right)^{30}}$$ is :
Answer
(A)
–215i
5
If a + x = b + y = c + z + 1, where a, b, c, x, y, z
are non-zero distinct real numbers, then
$$\left| {\matrix{ x & {a + y} & {x + a} \cr y & {b + y} & {y + b} \cr z & {c + y} & {z + c} \cr } } \right|$$ is equal to :
Answer
(B)
y(a – b)
6
$$\mathop {\lim }\limits_{x \to 0} {{x\left( {{e^{\left( {\sqrt {1 + {x^2} + {x^4}} - 1} \right)/x}} - 1} \right)} \over {\sqrt {1 + {x^2} + {x^4}} - 1}}$$
Answer
(C)
is equal to 1.
7
Let the vectors $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be such that
$$\left| {\overrightarrow a } \right| = 2$$, $$\left| {\overrightarrow b } \right| = 4$$ and $$\left| {\overrightarrow c } \right| = 4$$. If the projection of
$$\overrightarrow b $$ on $$\overrightarrow a $$ is equal to the projection of $$\overrightarrow c $$ on $$\overrightarrow a $$
and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, then the value of
$$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ is ___________.
Answer
6
8
The area (in sq. units) of the region

A = {(x, y) : (x – 1)[x] $$ \le $$ y $$ \le $$ 2$$\sqrt x $$, 0 $$ \le $$ x $$ \le $$ 2}, where [t]

denotes the greatest integer function, is :
Answer
(C)
$${8 \over 3}\sqrt 2 - {1 \over 2}$$
9
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
Answer
19
10
If $$\alpha $$ and $$\beta $$ are the roots of the equation,
7x2 – 3x – 2 = 0, then the value of
$${\alpha \over {1 - {\alpha ^2}}} + {\beta \over {1 - {\beta ^2}}}$$ is equal to :
Answer
(C)
$${{27} \over {16}}$$
11
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
Answer
(B)
M = $${1 \over {2\sqrt 2 }} + {1 \over 2}\cos {\pi \over 8}$$
12
The derivative of
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
Answer
(C)
$${{\sqrt 3 } \over {10}}$$
13
If the system of linear equations
x + y + 3z = 0
x + 3y + k2z = 0
3x + y + 3z = 0
has a non-zero solution (x, y, z) for some k $$ \in $$ R, then x + $$\left( {{y \over z}} \right)$$ is equal to :
Answer
(D)
-3
14
If the length of the chord of the circle,
x2 + y2 = r2 (r > 0) along the line, y – 2x = 3 is r,
then r2 is equal to :
Answer
(C)
$${{12} \over 5}$$
15
If
$$\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $$ = A$${\log _e}\left| {B\left( \theta \right)} \right| + C$$,

where C is a constant of integration, then $${{{B\left( \theta \right)} \over A}}$$
can be :
Answer
(C)
$${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$$
16
There are 3 sections in a question paper and each section contains 5 questions. A candidate has to answer a total of 5 questions, choosing at least one question from each section. Then the number of ways, in which the candidate can choose the questions, is :
Answer
(A)
2250
17
If x = 1 is a critical point of the function
f(x) = (3x2 + ax – 2 – a)ex , then :
Answer
(D)
x = 1 is a local minima and x = $$ - {2 \over 3}$$ is a local maxima of f.