JEE MAIN - Mathematics (2020 - 4th September Evening Slot - No. 10)

Suppose the vectors x1, x2 and x3 are the
solutions of the system of linear equations,
Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. if

$${x_1} = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, $${x_2} = \left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right]$$, $${x_3} = \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]$$

$${b_1} = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$, $${b_2} = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$ and $${b_3} = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$,
then the determinant of A is equal to :
$${3 \over 2}$$
4
2
$${1 \over 2}$$

Explanation

Let A = $$\left[ {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right]$$

For Ax1 = b1 :

$$ \Rightarrow $$ $$\left[ {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right]\left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$

$$ \therefore $$ $${a_1} + {a_2} + {a_3} = 1$$ ....(1)

$${a_4} + {a_5} + {a_6} = 0$$ ......(2)

$${a_7} + {a_8} + {a_9} = 0$$ .....(3)

For Ax2 = b2 :

$$\left[ {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right]\left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$

$$ \therefore $$ $$2{a_2} + {a_3} = 0$$ .....(4)

$$2{a_5} + {a_6} = 2$$ ....(5)

$$2{a_8} + {a_9} = 0$$ ....(6)

For Ax3 = b3 :

$$\left[ {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right]\left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$

$$ \therefore $$ $${{a_3} = 0}$$

$${{a_6} = 0}$$

$${{a_9} = 2}$$

Putting value of $${{a_3}}$$ in equation (4), we get

$${{a_2}}$$ = 0

Putting value of $${{a_6}}$$ in equation (5), we get

$${{a_5}}$$ = 1

Putting value of $${{a_9}}$$ in equation (6), we get

$${{a_8}}$$ = -1

Putting value of $${{a_2}}$$ and $${{a_3}}$$ in equation (1), we get

$${{a_1}}$$ = 1

Putting value of $${{a_5}}$$ and $${{a_6}}$$ in equation (6), we get

$${{a_4}}$$ = -1

Putting value of $${{a_5}}$$ and $${{a_6}}$$ in equation (6), we get

$${{a_4}}$$ = -1

Putting value of $${{a_8}}$$ and $${{a_9}}$$ in equation (6), we get

$${{a_7}}$$ = -1

$$ \therefore $$ A = $$\left[ {\matrix{ 1 & 0 & 0 \cr { - 1} & 1 & 0 \cr { - 1} & { - 1} & 2 \cr } } \right]$$

So, |A| = 2(1) = 2

Comments (0)

Advertisement