JEE MAIN - Mathematics (2020 - 3rd September Morning Slot - No. 23)

Let A = $$\left[ {\matrix{ x & 1 \cr 1 & 0 \cr } } \right]$$, x $$ \in $$ R and A4 = [aij].
If a11 = 109, then a22 is equal to _______ .
Answer
10

Explanation

$${A^2} = \left[ {\matrix{ x & 1 \cr 1 & 0 \cr } } \right]\left[ {\matrix{ x & 1 \cr 1 & 0 \cr } } \right] = \left[ {\matrix{ {{x^2} + 1} & x \cr x & 1 \cr } } \right]$$

$${A^4} = \left[ {\matrix{ {{x^2} + 1} & x \cr x & 1 \cr } } \right]\left[ {\matrix{ {{x^2} + 1} & x \cr x & 1 \cr } } \right]$$

$$ = \left[ {\matrix{ {{{({x^2} + 1)}^2} + {x^2}} & {x({x^2} + 1) + x} \cr {x({x^2} + 1) + x} & {{x^2} + 1} \cr } } \right]$$

Given $${({x^2} + 1)^2} + {x^2} = 109$$

Let $${x^2} + 1$$ = t

$${t^2} + t - 1 = 109$$

$$ \Rightarrow $$ (t $$ - $$ 10) (t + 11) = 0

$$ \therefore $$ t = 10 = x2 + 1 = a22

Comments (0)

Advertisement