JEE MAIN - Mathematics (2020 - 3rd September Morning Slot - No. 19)

If $${\left( {{{1 + i} \over {1 - i}}} \right)^{{m \over 2}}} = {\left( {{{1 + i} \over {1 - i}}} \right)^{{n \over 3}}} = 1$$, (m, n $$ \in $$ N) then the greatest common divisor of the least values of m and n is _______ .
Answer
4

Explanation

$${\left( {{{1 + i} \over {1 - i}}} \right)^{m/2}} = {\left( {{{1 + i} \over {1 - i}}} \right)^{n/3}} = 1$$

$$ \Rightarrow {\left( {{{{{\left( {1 + i} \right)}^2}} \over 2}} \right)^{m/2}} = {\left( {{{{{\left( {1 + i} \right)}^2}} \over { - 2}}} \right)^{n/3}} = 1$$

$$ \Rightarrow {(i)^{m/2}} = {( - i)^{n/3}} = 1$$ = i4 [ As i4 = 1]

$$ \Rightarrow {m \over 2} = 4{k_1}\,and\,{n \over 3} = 4{k_2}$$

$$ \Rightarrow $$ m = 8 k1 and n = 12 k2

Least value of m = 8 and n = 12.

$$ \therefore $$ GCD (8, 12) = 4

Comments (0)

Advertisement