JEE MAIN - Mathematics (2020 - 3rd September Morning Slot - No. 17)
The lines
$$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$ and
$$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
$$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$ and
$$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
do not intersect for any values of $$l$$ and m
intersect for all values of $$l$$ and m
intersect when $$l$$ = 2 and m = $${1 \over 2}$$
intersect when $$l$$ = 1 and m = 2
Explanation
L1 = $$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$
= $$\widehat i\left( {1 + 2l} \right) + \widehat j\left( { - 1} \right) + \widehat k\left( l \right)$$
L2 = $$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
= $$\widehat i\left( {2 + m} \right) + \widehat j\left( {m - 1} \right) + \widehat k\left( { - m} \right)$$
Equating coefficient of $$\widehat i$$, $$\widehat j$$ and $$\widehat k$$ of L1 and L2
2l + 1 = m + 2 ... (1)
ā1 = ā1 + m ...(2)
l = ām ...(3)
from (ii) m = 0
from (iii) $$l$$ = 0
These values of m and $$l$$ do not satisfy equation (1).
Hence the two lines do not intersect for any values of $$l$$ and m.
= $$\widehat i\left( {1 + 2l} \right) + \widehat j\left( { - 1} \right) + \widehat k\left( l \right)$$
L2 = $$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
= $$\widehat i\left( {2 + m} \right) + \widehat j\left( {m - 1} \right) + \widehat k\left( { - m} \right)$$
Equating coefficient of $$\widehat i$$, $$\widehat j$$ and $$\widehat k$$ of L1 and L2
2l + 1 = m + 2 ... (1)
ā1 = ā1 + m ...(2)
l = ām ...(3)
from (ii) m = 0
from (iii) $$l$$ = 0
These values of m and $$l$$ do not satisfy equation (1).
Hence the two lines do not intersect for any values of $$l$$ and m.
Comments (0)
