JEE MAIN - Mathematics (2020 - 3rd September Morning Slot - No. 10)
If y2 + loge (cos2x) = y,
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
|y''(0)| = 2
|y'(0)| + |y''(0)| = 3
y''(0) = 0
|y'(0)| + |y"(0)| = 1
Explanation
Given y2 + loge (cos2x) = y .....(1)
Put x = 0, we get
y2 + loge (1) = y
$$ \Rightarrow $$ y2 = y
$$ \Rightarrow $$ y = 0, 1
Differentiating (1) we get
2yy' + $${1 \over {\cos x}}\left( { - \sin x} \right)$$ = y'
$$ \Rightarrow $$ 2yy' - 2tanx = y' ....(2)
From (2) when x = 0, y = 0 then y'(0) = 0
From (2) when x = 0, y = 1 then
2y' = y'
$$ \Rightarrow $$ y'(0) = 0
Again differentiating (2) we get
2(y')2 + 2yy'' – 2sec2x = y''
from (2) when x = 0, y = 0, y’(0) = 0 then
y”(0) = -2
Also from (2) when x = 0, y = 1, y’(0) = 0 then
y”(0) = 2
$$ \therefore $$ |y''(0)| = 2
Put x = 0, we get
y2 + loge (1) = y
$$ \Rightarrow $$ y2 = y
$$ \Rightarrow $$ y = 0, 1
Differentiating (1) we get
2yy' + $${1 \over {\cos x}}\left( { - \sin x} \right)$$ = y'
$$ \Rightarrow $$ 2yy' - 2tanx = y' ....(2)
From (2) when x = 0, y = 0 then y'(0) = 0
From (2) when x = 0, y = 1 then
2y' = y'
$$ \Rightarrow $$ y'(0) = 0
Again differentiating (2) we get
2(y')2 + 2yy'' – 2sec2x = y''
from (2) when x = 0, y = 0, y’(0) = 0 then
y”(0) = -2
Also from (2) when x = 0, y = 1, y’(0) = 0 then
y”(0) = 2
$$ \therefore $$ |y''(0)| = 2
Comments (0)
