JEE MAIN - Mathematics (2020 - 3rd September Morning Slot - No. 1)

For the frequency distribution :
Variate (x) :      x1   x2   x3 ....  x15
Frequency (f) : f1    f2   f3 ...... f15
where 0 < x1 < x2 < x3 < ... < x15 = 10 and
$$\sum\limits_{i = 1}^{15} {{f_i}} $$ > 0, the standard deviation cannot be :
6
1
4
2

Explanation

If variate varries from m to M then variance

$${\sigma ^2} \le {1 \over 4}{\left( {M - m} \right)^2}$$

(M = upper bound of value of any random variable,

m = Lower bound of value of any random variable)

Here M = 10 and m = 0

$$ \therefore $$ $${\sigma ^2} \le {1 \over 4}{\left( {10 - 0} \right)^2}$$

$$ \Rightarrow $$ $${\sigma ^2} \le 25$$

$$ \Rightarrow $$ $$ - 5 \le \sigma \le 5$$

$$ \therefore $$ $$\sigma $$ $$ \ne $$ 6

Comments (0)

Advertisement