JEE MAIN - Mathematics (2020 - 3rd September Evening Slot - No. 5)

If the value of the integral
$$\int\limits_0^{{1 \over 2}} {{{{x^2}} \over {{{\left( {1 - {x^2}} \right)}^{{3 \over 2}}}}}} dx$$

is $${k \over 6}$$, then k is equal to :
$$2\sqrt 3 + \pi $$
$$3\sqrt 2 - \pi $$
$$3\sqrt 2 + \pi $$
$$2\sqrt 3 - \pi $$

Explanation

$$I = \int\limits_0^{{1 \over 2}} {{{{x^2}} \over {{{(1 - {x^2})}^{{3 \over 2}}}}}} dx$$

Let $$x = \sin \theta $$

$$ \Rightarrow dx = \cos \theta d\theta $$

When x = 0 then sin$$\theta $$ = 0 $$ \Rightarrow $$ $$\theta $$ = 0

When $$x = {1 \over 2}$$ then $$\sin \theta = {1 \over 2}$$ $$ \Rightarrow $$ $$\theta = {\pi \over 6}$$

$$ \therefore $$ $$I = \int\limits_0^{{\pi \over 6}} {{{{{\sin }^2}\theta } \over {{{({{\cos }^2}\theta )}^{{3 \over 2}}}}}\cos \theta d\theta } $$

$$ = \int\limits_0^{{\pi \over 6}} {{{{{\sin }^2}\theta } \over {{{\cos }^2}\theta }}d\theta } $$

$$ = \int\limits_0^{{\pi \over 6}} {{{\tan }^2}d\theta } = \int\limits_0^{{\pi \over 6}} {({{\sec }^2}\theta - 1)d\theta } $$

$$ = \left[ {\tan \theta - \theta } \right]_0^{{\pi \over 6}}$$

$$ = {1 \over {\sqrt 3 }} - {\pi \over 6}$$

Given, $${k \over 6} = {1 \over {\sqrt 3 }} - {\pi \over 6} = {{2\sqrt 3 - \pi } \over 6}$$

$$ \Rightarrow k = 2\sqrt 3 - \pi $$

Comments (0)

Advertisement