JEE MAIN - Mathematics (2020 - 2nd September Morning Slot - No. 15)
Let
$$\alpha $$ and
$$\beta $$ be the roots of the equation
5x2 + 6x – 2 = 0. If Sn = $$\alpha $$n + $$\beta $$n, n = 1, 2, 3...., then :
5x2 + 6x – 2 = 0. If Sn = $$\alpha $$n + $$\beta $$n, n = 1, 2, 3...., then :
5S6
+ 6S5
= 2S4
5S6
+ 6S5
+ 2S4 = 0
6S6
+ 5S5
+ 2S4 = 0
6S6
+ 5S5
= 2S4
Explanation
$$\alpha $$ and
$$\beta $$ be the roots of the equation
5x2 + 6x – 2 = 0.
$$ \Rightarrow $$ 5$$\alpha $$2 + 6$$\alpha $$ - 2 = 0
$$ \Rightarrow $$ 5$$\alpha $$n + 2 + 6$$\alpha $$n + 2 - 2$$\alpha $$n = 0 ......(1)
(By multiplying $$\alpha $$n)
Similarly 5$$\beta $$n + 2 + 6$$\beta $$n + 2 - 2$$\beta $$n = 0 ......(2)
By adding (1) & (2)
5Sn+2 + 6Sn+1 – 2Sn = 0
For n = 4
5S6 + 6S5 = 2S4
5x2 + 6x – 2 = 0.
$$ \Rightarrow $$ 5$$\alpha $$2 + 6$$\alpha $$ - 2 = 0
$$ \Rightarrow $$ 5$$\alpha $$n + 2 + 6$$\alpha $$n + 2 - 2$$\alpha $$n = 0 ......(1)
(By multiplying $$\alpha $$n)
Similarly 5$$\beta $$n + 2 + 6$$\beta $$n + 2 - 2$$\beta $$n = 0 ......(2)
By adding (1) & (2)
5Sn+2 + 6Sn+1 – 2Sn = 0
For n = 4
5S6 + 6S5 = 2S4
Comments (0)
