JEE MAIN - Mathematics (2020 - 2nd September Morning Slot - No. 14)
The domain of the function
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$ is (– $$\infty $$, -a]$$ \cup $$[a, $$\infty $$). Then a is equal to :
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$ is (– $$\infty $$, -a]$$ \cup $$[a, $$\infty $$). Then a is equal to :
$${{\sqrt {17} - 1} \over 2}$$
$${{1 + \sqrt {17} } \over 2}$$
$${{\sqrt {17} } \over 2} + 1$$
$${{\sqrt {17} } \over 2}$$
Explanation
f(x) = $${\sin ^{ - 1}}\left( {{{\left| x \right| + 5} \over {{x^2} + 1}}} \right)$$
$$ \therefore $$ $$ - 1 \le {{\left| x \right| + 5} \over {{x^2} + 1}} \le 1$$
Since |x| + 5 & x2 + 1 is always positive
So $${{\left| x \right| + 5} \over {{x^2} + 1}} \ge 0$$
That means this inequality $$ - 1 \le {{\left| x \right| + 5} \over {{x^2} + 1}}$$ always right. So we can ignore it.
So for domain :
$${{\left| x \right| + 5} \over {{x^2} + 1}} \le 1$$
$$ \Rightarrow $$ $${{x^2} - \left| x \right| - 4 \ge 0}$$
$$ \Rightarrow $$ $$\left( {\left| x \right| - {{1 - \sqrt {17} } \over 2}} \right)\left( {\left| x \right| - {{1 + \sqrt {17} } \over 2}} \right) \ge 0$$
$$ \Rightarrow $$ |x| $$ \ge $$ $${{{1 + \sqrt {17} } \over 2}}$$ or |x| $$ \le $$ $${{{1 - \sqrt {17} } \over 2}}$$
As $${{{1 - \sqrt {17} } \over 2}}$$ is < 0 and |x| always $$ \ge $$ 0. So
|x| $$ \le $$ $${{{1 - \sqrt {17} } \over 2}}$$ not possible.
$$ \therefore $$ |x| $$ \ge $$ $${{{1 + \sqrt {17} } \over 2}}$$
x $$ \in $$ $$\left( { - \infty , - {{1 + \sqrt {17} } \over 2}} \right) \cup \left( {{{1 + \sqrt {17} } \over 2},\infty } \right)$$
So, a = $${{{1 + \sqrt {17} } \over 2}}$$
$$ \therefore $$ $$ - 1 \le {{\left| x \right| + 5} \over {{x^2} + 1}} \le 1$$
Since |x| + 5 & x2 + 1 is always positive
So $${{\left| x \right| + 5} \over {{x^2} + 1}} \ge 0$$
That means this inequality $$ - 1 \le {{\left| x \right| + 5} \over {{x^2} + 1}}$$ always right. So we can ignore it.
So for domain :
$${{\left| x \right| + 5} \over {{x^2} + 1}} \le 1$$
$$ \Rightarrow $$ $${{x^2} - \left| x \right| - 4 \ge 0}$$
$$ \Rightarrow $$ $$\left( {\left| x \right| - {{1 - \sqrt {17} } \over 2}} \right)\left( {\left| x \right| - {{1 + \sqrt {17} } \over 2}} \right) \ge 0$$
$$ \Rightarrow $$ |x| $$ \ge $$ $${{{1 + \sqrt {17} } \over 2}}$$ or |x| $$ \le $$ $${{{1 - \sqrt {17} } \over 2}}$$
As $${{{1 - \sqrt {17} } \over 2}}$$ is < 0 and |x| always $$ \ge $$ 0. So
|x| $$ \le $$ $${{{1 - \sqrt {17} } \over 2}}$$ not possible.
$$ \therefore $$ |x| $$ \ge $$ $${{{1 + \sqrt {17} } \over 2}}$$
_2nd_September_Morning_Slot_en_14_2.png)
x $$ \in $$ $$\left( { - \infty , - {{1 + \sqrt {17} } \over 2}} \right) \cup \left( {{{1 + \sqrt {17} } \over 2},\infty } \right)$$
So, a = $${{{1 + \sqrt {17} } \over 2}}$$
Comments (0)
