JEE MAIN - Mathematics (2020 - 2nd September Morning Slot - No. 13)

The value of

$${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$ is :
$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
-$${1 \over 2}\left( {\sqrt 3 - i} \right)$$
$$ - {1 \over 2}\left( {1 - i\sqrt 3 } \right)$$
$${1 \over 2}\left( {1 - i\sqrt 3 } \right)$$

Explanation

$${\left( {{{1 + \sin {{2\pi } \over 9} + i\cos {{2\pi } \over 9}} \over {1 + \sin {{2\pi } \over 9} - i\cos {{2\pi } \over 9}}}} \right)^3}$$

= $${\left( {{{1 + \sin \left( {{\pi \over 2} - {{5\pi } \over {18}}} \right) + i\cos \left( {{\pi \over 2} - {{5\pi } \over {18}}} \right)} \over {1 + \sin \left( {{\pi \over 2} - {{5\pi } \over {18}}} \right) - i\cos \left( {{\pi \over 2} - {{5\pi } \over {18}}} \right)}}} \right)^3}$$

= $${\left( {{{1 + \cos \left( {{{5\pi } \over {18}}} \right) + i\sin \left( {{{5\pi } \over {18}}} \right)} \over {1 + \cos \left( {{{5\pi } \over {18}}} \right) - i\sin \left( {{{5\pi } \over {18}}} \right)}}} \right)^3}$$

= $${\left( {{{2{{\cos }^2}\left( {{{5\pi } \over {36}}} \right) + 2i\sin \left( {{{5\pi } \over {36}}} \right)\cos \left( {{{5\pi } \over {36}}} \right)} \over {2{{\cos }^2}\left( {{{5\pi } \over {36}}} \right) - 2i\sin \left( {{{5\pi } \over {36}}} \right)\cos \left( {{{5\pi } \over {36}}} \right)}}} \right)^3}$$

= $${\left( {{{\cos \left( {{{5\pi } \over {36}}} \right) + i\sin \left( {{{5\pi } \over {36}}} \right)} \over {\cos \left( {{{5\pi } \over {36}}} \right) - i\sin \left( {{{5\pi } \over {36}}} \right)}}} \right)^3}$$

= $${\left( {{{{e^{i{{5\pi } \over {36}}}}} \over {{e^{ - i{{5\pi } \over {36}}}}}}} \right)^3}$$

= $${\left( {{e^{i{{5\pi } \over {18}}}}} \right)^3}$$

= $${{e^{i{{5\pi } \over {18}} \times 3}}}$$ = $${{e^{i{{5\pi } \over 6}}}}$$

= $$\cos {{5\pi } \over 6} + i\sin {{5\pi } \over 6}$$

= $$ - {{\sqrt 3 } \over 2} + {i \over 2}$$

Comments (0)

Advertisement