JEE MAIN - Mathematics (2020 - 2nd September Morning Slot - No. 10)

Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8.

Then $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ is equal to ______.
Answer
2

Explanation

Given, $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = \left| {\overrightarrow c } \right| = 1$$

$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8

$$ \Rightarrow $$ $${\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} - 2\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow c } \right|^2} - 2\overrightarrow a .\overrightarrow c $$ = 8

$$ \Rightarrow $$ $$\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c $$ = -2

Now, $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$

= $${\left| {\overrightarrow a } \right|^2} + 4{\left| {\overrightarrow b } \right|^2} + 4\overrightarrow a .\overrightarrow b + {\left| {\overrightarrow a } \right|^2} + 4{\left| {\overrightarrow c } \right|^2} + 4\overrightarrow a .\overrightarrow c $$

= 10 + 4$$\left( {\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c } \right)$$

= 10 + 4(-2)

= 2

Comments (0)

Advertisement