JEE MAIN - Mathematics (2020 - 2nd September Evening Slot - No. 8)
Let A = {X = (x, y, z)T: PX = 0 and
x2 + y2 + z2 = 1} where
$$P = \left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]$$,
then the set A :
x2 + y2 + z2 = 1} where
$$P = \left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]$$,
then the set A :
is an empty set.
contains more than two elements.
contains exactly two elements.
is a singleton.
Explanation
Let $$X = \left[ {\matrix{
x \cr
y \cr
z \cr
} } \right]$$
PX = O
$$\left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
x + 2y + z = 0........(1)
-2x + 3y – 4z = 0....(2)
x + 9y - z = 0..........(3)
from (1) & (3)
$$ \Rightarrow $$ 2x+11y =0
from (1) & (2)
$$ \Rightarrow $$ 2x + 11y = 0
from (2) & (3)
–6x –33y = 0
$$ \Rightarrow $$ 2x +11y = 0
putting value of x in (1), we get
–7y + 2z = 0
Now $${\left( {{{11y} \over 2}} \right)^2} + {y^2} + {\left( {{{7y} \over 2}} \right)^2} = 1$$
y2(121 + 1 + 49) = 4
y2(171) = 4
$$y = \pm {2 \over {\sqrt {171} }}$$
$$ \Rightarrow x = \pm {7 \over {\sqrt {171} }}$$
$$ \Rightarrow z = \pm {{11} \over {\sqrt {171} }}$$
$$ \therefore $$ So, there are 2 solution set of (x, y, z)
PX = O
$$\left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
x + 2y + z = 0........(1)
-2x + 3y – 4z = 0....(2)
x + 9y - z = 0..........(3)
from (1) & (3)
$$ \Rightarrow $$ 2x+11y =0
from (1) & (2)
$$ \Rightarrow $$ 2x + 11y = 0
from (2) & (3)
–6x –33y = 0
$$ \Rightarrow $$ 2x +11y = 0
putting value of x in (1), we get
–7y + 2z = 0
Now $${\left( {{{11y} \over 2}} \right)^2} + {y^2} + {\left( {{{7y} \over 2}} \right)^2} = 1$$
y2(121 + 1 + 49) = 4
y2(171) = 4
$$y = \pm {2 \over {\sqrt {171} }}$$
$$ \Rightarrow x = \pm {7 \over {\sqrt {171} }}$$
$$ \Rightarrow z = \pm {{11} \over {\sqrt {171} }}$$
$$ \therefore $$ So, there are 2 solution set of (x, y, z)
Comments (0)
