JEE MAIN - Mathematics (2020 - 2nd September Evening Slot - No. 3)

Let f : R $$ \to $$ R be a function which satisfies
f(x + y) = f(x) + f(y) $$\forall $$ x, y $$ \in $$ R. If f(1) = 2 and
g(n) = $$\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)} $$, n $$ \in $$ N then the value of n, for which g(n) = 20, is :
20
9
5
4

Explanation

Given f(1) = 2 ;

f(x + y) = f(x) + f(y)

When x = y = 1 $$ \Rightarrow $$ f(2) = 2 + 2 = 4

When x = 2, y = 1 $$ \Rightarrow $$ f(3) = 4 + 2 = 6

g(n) = $$\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)} $$

= f(1) + f(2) +.........+ f(n - 1)

= 2 + 4 + 6 + ......+ 2(n - 1)

= 2 $$ \times $$ $$\frac{\left( n-1\right) \left( n\right) }{2} $$

= n2 - n

Given g(n) = 20

$$ \Rightarrow $$ n2– n = 20

$$ \Rightarrow $$ n2 – n – 20 = 0

$$ \Rightarrow $$ n = 5

Comments (0)

Advertisement