JEE MAIN - Mathematics (2020 - 2nd September Evening Slot - No. 15)
If a curve y = f(x), passing through the point
(1, 2), is the solution of the differential equation,
2x2dy= (2xy + y2)dx, then $$f\left( {{1 \over 2}} \right)$$ is equal to :
2x2dy= (2xy + y2)dx, then $$f\left( {{1 \over 2}} \right)$$ is equal to :
$${1 \over {1 - {{\log }_e}2}}$$
$${1 \over {1 + {{\log }_e}2}}$$
$${{ - 1} \over {1 + {{\log }_e}2}}$$
$${1 + {{\log }_e}2}$$
Explanation
$$2{x^2}dy = \left( {2xy + {y^2}} \right)dx$$
$$ \Rightarrow 2{x^2}{{dy} \over {dx}} = 2xy + {y^2}$$
$$ \Rightarrow {{2{x^2}} \over {2{x^2}{y^2}}}{{dy} \over {dx}} = {{2xy} \over {2{x^2}{y^2}}} + {{{y^2}} \over {2{x^2}{y^2}}}$$
$$ \Rightarrow {1 \over {{y^2}}}{{dy} \over {dx}} - {1 \over x}{1 \over y} = {1 \over {2{x^2}}}$$
Let $$ - {1 \over y} = t$$
$$ \Rightarrow {1 \over {{y^2}}}{{dy} \over {dx}} = {{dt} \over {dx}}$$
$$ \Rightarrow {{dt} \over {dx}} + t{1 \over x} = {1 \over {2{x^2}}}$$
This is linear differentiatial equation.
$$ \therefore I.F = {e^{\int {{1 \over x}dx} }} = {e^{\ln x}}$$
$$ \therefore t.{e^{\ln x}} = \int {{1 \over {2{x^2}}}.{e^{\ln x}}dx} $$
$$ \Rightarrow - {1 \over y}.x = \int {{1 \over {2{x^2}}}.xdx} $$
$$ \Rightarrow - {x \over y} = {1 \over 2}\int {{{dx} \over x}} $$
$$ \Rightarrow - {x \over y} = {1 \over 2}\ln x + c$$
This curve passes through the point (1, 2)
$$ \therefore - {1 \over 2} = 0 + c$$
$$ \Rightarrow c = - {1 \over 2}$$
$$ \therefore - {x \over y} = {1 \over 2}\ln x - {1 \over 2}$$
$$ \Rightarrow - {{2x} \over y} = \ln x - 1$$
$$ \Rightarrow y = {{2x} \over {1 - \ln x}}$$
$$ \Rightarrow f\left( x \right) = {{2x} \over {1 - \ln x}}$$
So, $$f\left( {{1 \over 2}} \right) = {{2 \times {1 \over 2}} \over {1 - \ln \left( {{1 \over 2}} \right)}} = {1 \over {1 + {{\log }_e}2}}$$
$$ \Rightarrow 2{x^2}{{dy} \over {dx}} = 2xy + {y^2}$$
$$ \Rightarrow {{2{x^2}} \over {2{x^2}{y^2}}}{{dy} \over {dx}} = {{2xy} \over {2{x^2}{y^2}}} + {{{y^2}} \over {2{x^2}{y^2}}}$$
$$ \Rightarrow {1 \over {{y^2}}}{{dy} \over {dx}} - {1 \over x}{1 \over y} = {1 \over {2{x^2}}}$$
Let $$ - {1 \over y} = t$$
$$ \Rightarrow {1 \over {{y^2}}}{{dy} \over {dx}} = {{dt} \over {dx}}$$
$$ \Rightarrow {{dt} \over {dx}} + t{1 \over x} = {1 \over {2{x^2}}}$$
This is linear differentiatial equation.
$$ \therefore I.F = {e^{\int {{1 \over x}dx} }} = {e^{\ln x}}$$
$$ \therefore t.{e^{\ln x}} = \int {{1 \over {2{x^2}}}.{e^{\ln x}}dx} $$
$$ \Rightarrow - {1 \over y}.x = \int {{1 \over {2{x^2}}}.xdx} $$
$$ \Rightarrow - {x \over y} = {1 \over 2}\int {{{dx} \over x}} $$
$$ \Rightarrow - {x \over y} = {1 \over 2}\ln x + c$$
This curve passes through the point (1, 2)
$$ \therefore - {1 \over 2} = 0 + c$$
$$ \Rightarrow c = - {1 \over 2}$$
$$ \therefore - {x \over y} = {1 \over 2}\ln x - {1 \over 2}$$
$$ \Rightarrow - {{2x} \over y} = \ln x - 1$$
$$ \Rightarrow y = {{2x} \over {1 - \ln x}}$$
$$ \Rightarrow f\left( x \right) = {{2x} \over {1 - \ln x}}$$
So, $$f\left( {{1 \over 2}} \right) = {{2 \times {1 \over 2}} \over {1 - \ln \left( {{1 \over 2}} \right)}} = {1 \over {1 + {{\log }_e}2}}$$
Comments (0)
