JEE MAIN - Mathematics (2020 - 2nd September Evening Slot - No. 10)
Let [t] denote the greatest integer less than or
equal to t.
Then the value of $$\int\limits_1^2 {\left| {2x - \left[ {3x} \right]} \right|dx} $$ is ______.
Then the value of $$\int\limits_1^2 {\left| {2x - \left[ {3x} \right]} \right|dx} $$ is ______.
Answer
1
Explanation
$$\int\limits_1^2 {\left| {2x - \left[ {3x} \right]} \right|dx} $$
$$ = \int\limits_1^2 {\left| {2x - \left( {3x - \left\{ {3x} \right\}} \right)} \right|dx} $$
$$ = \int\limits_1^2 {\left| {\left\{ {3x} \right\} - x} \right|dx} $$
We know, 0 $$ \le $$ $$\left\{ {3x} \right\} < 1$$ and x > 1
$$\therefore \left\{ {3x} \right\} - x < 0$$
So, $$\left| {\left\{ {3x} \right\} - 2} \right| = - \left[ {\left\{ {3x} \right\} - x} \right]$$
$$ = \int\limits_1^2 {\left( {x - \left\{ {3x} \right\}} \right)dx} $$
$$ = \left[ {{{{x^2}} \over 2}} \right]_1^2 - \int\limits_{3 \times {1 \over 3}}^{6 \times {1 \over 3}} {\left\{ {3x} \right\}dx} $$ [Period of {x} = 1, so period of {3x} = $${1 \over 3}$$]
$$ = \left( {2 - {1 \over 2}} \right) - \left( {6 - 3} \right)\int\limits_0^{{1 \over 3}} {3xdx} $$
$$ = {3 \over 2} - 3 \times 3\left[ {{{{x^2}} \over 2}} \right]_0^{{1 \over 3}}$$
$$ = {3 \over 2} - {9 \over 2}\left[ {{1 \over 9} - 0} \right]$$
$$ = {3 \over 2} - {1 \over 2}$$ = 1
$$ = \int\limits_1^2 {\left| {2x - \left( {3x - \left\{ {3x} \right\}} \right)} \right|dx} $$
$$ = \int\limits_1^2 {\left| {\left\{ {3x} \right\} - x} \right|dx} $$
We know, 0 $$ \le $$ $$\left\{ {3x} \right\} < 1$$ and x > 1
$$\therefore \left\{ {3x} \right\} - x < 0$$
So, $$\left| {\left\{ {3x} \right\} - 2} \right| = - \left[ {\left\{ {3x} \right\} - x} \right]$$
$$ = \int\limits_1^2 {\left( {x - \left\{ {3x} \right\}} \right)dx} $$
$$ = \left[ {{{{x^2}} \over 2}} \right]_1^2 - \int\limits_{3 \times {1 \over 3}}^{6 \times {1 \over 3}} {\left\{ {3x} \right\}dx} $$ [Period of {x} = 1, so period of {3x} = $${1 \over 3}$$]
$$ = \left( {2 - {1 \over 2}} \right) - \left( {6 - 3} \right)\int\limits_0^{{1 \over 3}} {3xdx} $$
$$ = {3 \over 2} - 3 \times 3\left[ {{{{x^2}} \over 2}} \right]_0^{{1 \over 3}}$$
$$ = {3 \over 2} - {9 \over 2}\left[ {{1 \over 9} - 0} \right]$$
$$ = {3 \over 2} - {1 \over 2}$$ = 1
Comments (0)
