JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 9)

If $$A = \left[ {\matrix{ {\cos \theta } & { - \sin \theta } \cr {\sin \theta } & {\cos \theta } \cr } } \right]$$, then the matrix A–50 when $$\theta $$ = $$\pi \over 12$$, is equal to :
$$\left[ {\matrix{ { {{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{{ 1} \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
$$\left[ {\matrix{ {{1 \over 2}} & -{{{\sqrt 3 } \over 2}} \cr {{{\sqrt 3 } \over 2}} & {{{ - 1} \over 2}} \cr } } \right]$$
$$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr -{{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
$$\left[ {\matrix{ {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr {-{{\sqrt 3 } \over 2}} & {{{ 1} \over 2}} \cr } } \right]$$

Explanation

(A$$-$$50) = (A$$-$$1)50

We know,

A$$-$$1 = $${{adjA} \over {\left| A \right|}}$$

$$\left| A \right|$$ = cos2$$\theta $$ + sin2$$\theta $$ = 1

cofactor of A = $$\left[ {\matrix{ {\cos \theta } & { - \sin \theta } \cr {\sin \theta } & {\cos \theta } \cr } } \right]$$

Adjoint of A = Transpose of cofactor matrix

$$ \therefore $$  Adj A = $$\left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$$

$$ \therefore $$  A$$-$$1 = $$\left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$$

$$ \therefore $$  (A$$-$$1)2 = $$\left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]\left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$$

= $$\left[ {\matrix{ {\cos 2\theta } & {\sin 2\theta } \cr { - \sin 2\theta } & {\cos 2\theta } \cr } } \right]$$

Similarly,

(A$$-$$1)3 = $$\left[ {\matrix{ {\cos 3\theta } & {\sin 3\theta } \cr { - \sin 3\theta } & {\cos 3\theta } \cr } } \right]$$

:

:

:

(A$$-$$1)50 = $$\left[ {\matrix{ {\cos 50\theta } & {\sin 50\theta } \cr { - \sin 50\theta } & {\cos 50\theta } \cr } } \right]$$

when $$\theta $$ = $${\pi \over {12}}$$ then

$${A^{ - 50}}$$ = $$\left[ {\matrix{ {\cos {{25\pi } \over 6}} & {\sin {{25\pi } \over 6}} \cr { - \sin {{25\pi } \over 6}} & {\cos {{25\pi } \over 6}} \cr } } \right]$$

= $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr { - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$

Note:

$$\cos {{25\pi } \over 6} = \cos \left( {4\pi + {\pi \over 6}} \right) = \cos {\pi \over 6} = {{\sqrt 3 } \over 2}$$

Comments (0)

Advertisement