JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 7)

Let $$0 < \theta < {\pi \over 2}$$. If the eccentricity of the

hyperbola $${{{x^2}} \over {{{\cos }^2}\theta }} - {{{y^2}} \over {{{\sin }^2}\theta }}$$ = 1 is greater

than 2, then the length of its latus rectum lies in the interval :
(3, $$\infty $$)
$$\left( {{3 \over 2},2} \right]$$
$$\left( {1,{3 \over 2}} \right]$$
$$\left( {2,3} \right]$$

Explanation

Given hyperbola,

$${{{x^2}} \over {{{\cos }^2}\theta }} - {{{y^2}} \over {{{\sin }^2}\theta }} = 1$$

here a = cos$$\theta $$

and b = sin$$\theta $$

We know, eccentricity of the hyperbola is,

$$\sqrt {1 + {{{b^2}} \over {{a^2}}}} $$

$$ \therefore $$  Here eccentricity

(e) = $$\sqrt {1 + {{{{\sin }^2}\theta } \over {{{\cos }^2}\theta }}} $$

Given that,

$$\sqrt {1 + {{{{\sin }^2}\theta } \over {{{\cos }^2}\theta }}} > 2$$

$$ \Rightarrow $$  $$\sqrt {1 + {{\tan }^2}\theta } > 2$$

$$ \Rightarrow $$   1 + tan2$$\theta $$ > 4

$$ \Rightarrow $$  tan2$$\theta $$ > 3

$$ \Rightarrow $$  tan$$\theta $$ > $$ \pm \sqrt 3 $$

As given $$\theta $$ $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$

possible value of tan$$\theta $$ > $$\sqrt 3 $$

So, $$\theta $$ can be in the range $${\pi \over 3} < \theta < {\pi \over 2}$$

JEE Main 2019 (Online) 9th January Morning Slot Mathematics - Hyperbola Question 65 English Explanation

We know latus ractum (LR) = $${{2{b^2}} \over a}$$

$$ \therefore $$  LR = $${{2{{\sin }^2}\theta } \over {\cos \theta }}$$

= 2 tan$$\theta $$ sin$$\theta $$

We know in the range $${\pi \over 3} < \theta < {\pi \over 2}$$ tan$$\theta $$ and sin$$\theta $$ both are increasing function.

So, at $${\pi \over 3}$$ value of LR will be minimum and at $${\pi \over 2}$$ value of LR will be maximum.

$$ \therefore $$  Minimum value of LR = 2tan$${\pi \over 3}$$ sin$${\pi \over 3}$$

= 2 $$ \times $$ $$\sqrt 3 \times {{\sqrt 3 } \over 2}$$
= 3

Maximum value of LR = 2tan$${\pi \over 2}$$ sin$${\pi \over 2}$$

= 2$$\left( \infty \right) \times 1$$

= $$\infty $$

$$ \therefore $$  Interval of LR = (3, $$\infty $$)

Comments (0)

Advertisement