JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 5)
The maximum volume (in cu.m) of the right circular cone having slant height 3 m is :
2$$\sqrt3$$$$\pi $$
3$$\sqrt3$$$$\pi $$
6$$\pi $$
$${4 \over 3}\pi $$
Explanation
_9th_January_Morning_Slot_en_5_1.png)
$$ \therefore $$ h = 3 cos$$\theta $$
r = 3 sin$$\theta $$
We know volume of right circular cone,
V = $${1 \over 3}\pi {r^2}h$$
= $${1 \over 3}\pi $$(3 sin$$\theta $$)2 3 cos$$\theta $$
= 9 $$\pi $$ sin2$$\theta $$ cos$$\theta $$
For maximum or minimum value of volume,
$${{dv} \over {d\theta }}$$ = 0
$$ \therefore $$ (2sin$$\theta $$ cos$$\theta $$) cos$$\theta $$ + 3sin2$$\theta $$ .($$-$$ sin$$\theta $$) = 0
$$ \Rightarrow $$ 2 sin$$\theta $$ cos2$$\theta $$ $$-$$ sin3$$\theta $$ = 0
$$ \Rightarrow $$ 2 sin$$\theta $$(1 $$-$$ sin2$$\theta $$) $$-$$ sin3 $$\theta $$ = 0
$$ \Rightarrow $$ 2 sin$$\theta $$ $$-$$ 2 sin3$$\theta $$ $$-$$ sin3$$\theta $$ = 0
$$ \Rightarrow $$ 3 sin3$$\theta $$ = 2 sin$$\theta $$
$$ \Rightarrow $$ sin2$$\theta $$ = $${2 \over 3}$$
$$ \Rightarrow $$ sin$$\theta $$ = $$\sqrt {{2 \over 3}} $$
$${{{d^2}v} \over {d{\theta ^2}}}$$ = 2cos$$\theta $$ $$-$$ 3(3sin$$\theta $$ cos$$\theta $$)
= 2 cos$$\theta $$ $$-$$ 9 sin$$\theta $$ cos$$\theta $$
= 2 $$ \times $$ $${1 \over {\sqrt 3 }}$$ $$-$$ 9 $$ \times $$ $${{\sqrt 2 } \over {\sqrt 3 }}$$ $$ \times $$ $${1 \over {\sqrt 3 }}$$
= $${2 \over {\sqrt 3 }} - 3\sqrt 2 \, < 0$$
$$ \therefore $$ Volume is maximum
when sin$$\theta $$ = $$\sqrt {{2 \over 3}} $$
$$ \therefore $$ Maximum volume is
= 9 $$\pi $$ $${\left( {\sqrt {{2 \over 3}} } \right)^2} \times {1 \over {\sqrt 3 }}$$
= 9 $$\pi $$ $$ \times $$ $${2 \over 3} \times {1 \over {\sqrt 3 }}$$
= $$2\sqrt 3 \,\pi $$
Comments (0)
