JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 19)
Let $$\alpha $$ and $$\beta $$ be two roots of the equation x2 + 2x + 2 = 0 , then $$\alpha ^{15}$$ + $$\beta ^{15}$$ is equal to :
-256
512
-512
256
Explanation
Given equation,
x2 + 2x + 2 = 0
$$ \therefore $$ x = $${{ - 2 \pm \sqrt {4 - 4.1.2} } \over {2.1}}$$
x = $$-$$ 1 $$ \pm $$ i
$$ \therefore $$ $$\alpha $$ = $$-$$ 1 + i
and $$\beta $$ = $$-$$ 1 $$-$$ i
Note :
x + iy = r (cos$$\theta $$ + isin$$\theta $$)
$$ \therefore $$ (x + iy)n = rn (cosn$$\theta $$ + isinn$$\theta $$)
$$ \therefore $$ $$-$$ 1 + i = $$\sqrt 2 $$ [cos$${{3\pi } \over 4}$$ + isin$${{3\pi } \over 4}$$ ]
$$ \Rightarrow $$ ($$-$$ 1 + i)15 = $${\left( {\sqrt 2 } \right)^{15}}$$ [cos$$\left( {{{15.3\pi } \over 4}} \right) + i\sin \left( {{{15.3\pi } \over 4}} \right)$$]
And $$-$$1 $$-$$ i = $$\sqrt 2 $$ $$\left[ {\cos \left( { - {{3\pi } \over 4}} \right) + i\sin \left( { - {{3\pi } \over 4}} \right)} \right]$$
= $$\sqrt 2 \left[ {\cos {{3\pi } \over 4} - \sin {{3\pi } \over 4}} \right]$$
$$ \therefore $$ ($$-$$1 $$-$$ i)15 = $${\left( {\sqrt 2 } \right)^{15}}\left[ {\cos \left( {{{15.3\pi } \over 4}} \right) - i\sin \left( {{{15.3\pi } \over 4}} \right)} \right]$$
Now
$$\alpha $$15 + $$\beta $$15
= ($$-$$1 + i)15 + ($$-$$ 1 $$-$$ i)15
= $${\left( {\sqrt 2 } \right)^{15}}$$ $$\left[ {2\cos \left( {{{15.3\pi } \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}}\left[ {2\cos \left( {11\pi + {\pi \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}}\left[ {2\left( { - \cos {\pi \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}} \times 2 \times - {1 \over {\sqrt 2 }}$$
= $$ - {\left( {\sqrt 2 } \right)^{14}}.2$$
= $$-$$ 27 $$ \times $$ 2
= $$-$$ 28
= $$-$$ 256
x2 + 2x + 2 = 0
$$ \therefore $$ x = $${{ - 2 \pm \sqrt {4 - 4.1.2} } \over {2.1}}$$
x = $$-$$ 1 $$ \pm $$ i
$$ \therefore $$ $$\alpha $$ = $$-$$ 1 + i
and $$\beta $$ = $$-$$ 1 $$-$$ i
Note :
x + iy = r (cos$$\theta $$ + isin$$\theta $$)
$$ \therefore $$ (x + iy)n = rn (cosn$$\theta $$ + isinn$$\theta $$)
$$ \therefore $$ $$-$$ 1 + i = $$\sqrt 2 $$ [cos$${{3\pi } \over 4}$$ + isin$${{3\pi } \over 4}$$ ]
$$ \Rightarrow $$ ($$-$$ 1 + i)15 = $${\left( {\sqrt 2 } \right)^{15}}$$ [cos$$\left( {{{15.3\pi } \over 4}} \right) + i\sin \left( {{{15.3\pi } \over 4}} \right)$$]
And $$-$$1 $$-$$ i = $$\sqrt 2 $$ $$\left[ {\cos \left( { - {{3\pi } \over 4}} \right) + i\sin \left( { - {{3\pi } \over 4}} \right)} \right]$$
= $$\sqrt 2 \left[ {\cos {{3\pi } \over 4} - \sin {{3\pi } \over 4}} \right]$$
$$ \therefore $$ ($$-$$1 $$-$$ i)15 = $${\left( {\sqrt 2 } \right)^{15}}\left[ {\cos \left( {{{15.3\pi } \over 4}} \right) - i\sin \left( {{{15.3\pi } \over 4}} \right)} \right]$$
Now
$$\alpha $$15 + $$\beta $$15
= ($$-$$1 + i)15 + ($$-$$ 1 $$-$$ i)15
= $${\left( {\sqrt 2 } \right)^{15}}$$ $$\left[ {2\cos \left( {{{15.3\pi } \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}}\left[ {2\cos \left( {11\pi + {\pi \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}}\left[ {2\left( { - \cos {\pi \over 4}} \right)} \right]$$
= $${\left( {\sqrt 2 } \right)^{15}} \times 2 \times - {1 \over {\sqrt 2 }}$$
= $$ - {\left( {\sqrt 2 } \right)^{14}}.2$$
= $$-$$ 27 $$ \times $$ 2
= $$-$$ 28
= $$-$$ 256
Comments (0)
