JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 18)
The value of $$\int\limits_0^\pi {{{\left| {\cos x} \right|}^3}} \,dx$$ is :
$$4 \over 3$$
$$-$$ $$4 \over 3$$
0
$$2 \over 3$$
Explanation
$$\int\limits_0^\pi {{{\left| {\cos x} \right|}^3}} \,dx$$
The period of $$\left| {\cos x} \right|$$ = $${\pi \over 2}$$
$$ \therefore $$ I = 2 $$\int\limits_0^{{\pi \over 2}} {{{\left| {\cos x} \right|}^3}} \,dx$$
as in the range 0 to $${\pi \over 2}$$ $$\left| {\cos x} \right|$$ is positive.
So, $$\left| {\cos x} \right|$$ = $$cosx$$
$$ \therefore $$ I = 2 $$\int\limits_0^{{\pi \over 2}} {{{\cos }^3}x\,dx} $$
= 2$$\int\limits_0^{{\pi \over 2}} {\left( {{{\cos 3x + 3\cos x} \over 4}} \right)} dx$$
I = $${1 \over 2}\left[ {{{\sin 3x} \over 3} + 3\sin x} \right]_0^{{\pi \over 2}}$$
I = $${1 \over 2}\left[ {{1 \over 3}\left( {{{3\pi } \over 2}} \right) + 3.\sin {\pi \over 2}} \right]$$
I = $${1 \over 2}\left[ { - {1 \over 3} + 3} \right]$$
= $${1 \over 2}\left( {{8 \over 3}} \right)$$
= $${4 \over 3}$$
The period of $$\left| {\cos x} \right|$$ = $${\pi \over 2}$$
$$ \therefore $$ I = 2 $$\int\limits_0^{{\pi \over 2}} {{{\left| {\cos x} \right|}^3}} \,dx$$
as in the range 0 to $${\pi \over 2}$$ $$\left| {\cos x} \right|$$ is positive.
So, $$\left| {\cos x} \right|$$ = $$cosx$$
$$ \therefore $$ I = 2 $$\int\limits_0^{{\pi \over 2}} {{{\cos }^3}x\,dx} $$
= 2$$\int\limits_0^{{\pi \over 2}} {\left( {{{\cos 3x + 3\cos x} \over 4}} \right)} dx$$
I = $${1 \over 2}\left[ {{{\sin 3x} \over 3} + 3\sin x} \right]_0^{{\pi \over 2}}$$
I = $${1 \over 2}\left[ {{1 \over 3}\left( {{{3\pi } \over 2}} \right) + 3.\sin {\pi \over 2}} \right]$$
I = $${1 \over 2}\left[ { - {1 \over 3} + 3} \right]$$
= $${1 \over 2}\left( {{8 \over 3}} \right)$$
= $${4 \over 3}$$
Comments (0)
