JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 15)

5 students of a class have an average height 150 cm and variance 18 cm2. A new student, whose height is 156 cm, joined them. The variance (in cm2) of the height of these six students is :
16
22
20
18

Explanation

Average height of 5 students,

$$\overline x = {{{x_1} + {x_2} + {x_3} + {x_4} + {x_5}} \over 5} = 150$$

$$ \Rightarrow \,\,\,\sum\limits_{i = 1}^5 {{x_i}} = 750$$

We know,

Variance $$\left( \sigma \right) = {{\sum {x_i^2} } \over 5} - {\left( {\overline x } \right)^2}$$

given that,

$${{\sum {x_i^2} } \over 5} - {\left( {150} \right)^2} = 18$$

$$ \Rightarrow \,\,\,\sum {x_i^2} = 112590$$

Height of new student, x6 $$=$$ 156 cm

New average height  $$\left( {{{\overline x }_{new}}} \right) = {{750 + 156} \over 6} = 151$$

New variance   $$ = {{\,\sum\limits_{i = 1}^6 {x_i^2} } \over 6} - {\left( {{{\overline x }_{new}}} \right)^2}$$

$$ = {{112590 + {{\left( {156} \right)}^2}} \over 6} - {\left( {151} \right)^2}$$

$$ = 22821 - 22801$$

$$ = 20$$

Comments (0)

Advertisement