JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 1)
Let $${a_1},{a_2},.......,{a_{30}}$$ be an A.P.,
$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$.
If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$.
If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
47
42
52
57
Explanation
Let the common difference = d
S = $$\sum\limits_{i = 1}^{30} {{a_i}} $$
= $$a$$1 + $$a$$2 + . . . . . + $$a$$30
$$ \therefore $$ S = $${{30} \over 2}\left[ {{a_1} + {a_{30}}} \right]$$
= 15 [$$a$$1 + $$a$$1 + 29d]
= 15 (2$$a$$1 + 29d)
T = $$\sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$
= $$a$$1 + $$a$$3 + . . . . . . + $$a$$29
= $${{15} \over 2}\left[ {a{}_1 + {a_{29}}} \right]$$
= $${{15} \over 2}\left[ {a{}_1 + {a_1} + 28d} \right]$$
= $${{15} \over 2}\left[ {2a{}_1 + 28d} \right]$$
= 15 ($$a$$1 + 14d)
Given,
S $$-$$ 2T = 75
$$ \Rightarrow $$ 15(2$$a$$1 + 29d) $$-$$ 2 $$ \times $$ 15 ($$a$$1 + 14d) = 75
$$ \Rightarrow $$ 30$$a$$1 + 15 $$ \times $$ 29d $$-$$ 30 $$a$$1 $$-$$ 420d = 75
$$ \Rightarrow $$ 435d $$-$$ 420d = 75
$$ \Rightarrow $$ 15d = 75
$$ \Rightarrow $$ d = 5
Given that,
$$a$$5 = 27
$$ \Rightarrow $$ $$a$$1 + 4d = 27
$$ \Rightarrow $$ $$a$$1 + 20 = 27
$$ \Rightarrow $$ $$a$$1 = 7
$$ \therefore $$ $$a$$10 = $$a$$1 + 9d
= 7 + 45
= 52
S = $$\sum\limits_{i = 1}^{30} {{a_i}} $$
= $$a$$1 + $$a$$2 + . . . . . + $$a$$30
$$ \therefore $$ S = $${{30} \over 2}\left[ {{a_1} + {a_{30}}} \right]$$
= 15 [$$a$$1 + $$a$$1 + 29d]
= 15 (2$$a$$1 + 29d)
T = $$\sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$
= $$a$$1 + $$a$$3 + . . . . . . + $$a$$29
= $${{15} \over 2}\left[ {a{}_1 + {a_{29}}} \right]$$
= $${{15} \over 2}\left[ {a{}_1 + {a_1} + 28d} \right]$$
= $${{15} \over 2}\left[ {2a{}_1 + 28d} \right]$$
= 15 ($$a$$1 + 14d)
Given,
S $$-$$ 2T = 75
$$ \Rightarrow $$ 15(2$$a$$1 + 29d) $$-$$ 2 $$ \times $$ 15 ($$a$$1 + 14d) = 75
$$ \Rightarrow $$ 30$$a$$1 + 15 $$ \times $$ 29d $$-$$ 30 $$a$$1 $$-$$ 420d = 75
$$ \Rightarrow $$ 435d $$-$$ 420d = 75
$$ \Rightarrow $$ 15d = 75
$$ \Rightarrow $$ d = 5
Given that,
$$a$$5 = 27
$$ \Rightarrow $$ $$a$$1 + 4d = 27
$$ \Rightarrow $$ $$a$$1 + 20 = 27
$$ \Rightarrow $$ $$a$$1 = 7
$$ \therefore $$ $$a$$10 = $$a$$1 + 9d
= 7 + 45
= 52
Comments (0)
