JEE MAIN - Mathematics (2019 - 9th January Morning Slot - No. 1)

Let $${a_1},{a_2},.......,{a_{30}}$$ be an A.P.,

$$S = \sum\limits_{i = 1}^{30} {{a_i}} $$ and $$T = \sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$.

If $$a_5$$ = 27 and S - 2T = 75, then $$a_{10}$$ is equal to :
47
42
52
57

Explanation

Let the common difference = d

S = $$\sum\limits_{i = 1}^{30} {{a_i}} $$

= $$a$$1 + $$a$$2 + . . . . . + $$a$$30

$$ \therefore $$  S = $${{30} \over 2}\left[ {{a_1} + {a_{30}}} \right]$$

= 15 [$$a$$1 + $$a$$1 + 29d]

= 15 (2$$a$$1 + 29d)

T = $$\sum\limits_{i = 1}^{15} {{a_{\left( {2i - 1} \right)}}} $$

= $$a$$1 + $$a$$3 + . . . . . . + $$a$$29

= $${{15} \over 2}\left[ {a{}_1 + {a_{29}}} \right]$$

= $${{15} \over 2}\left[ {a{}_1 + {a_1} + 28d} \right]$$

= $${{15} \over 2}\left[ {2a{}_1 + 28d} \right]$$

= 15 ($$a$$1 + 14d)

Given,

S $$-$$ 2T = 75

$$ \Rightarrow $$  15(2$$a$$1 + 29d) $$-$$ 2 $$ \times $$ 15 ($$a$$1 + 14d) = 75

$$ \Rightarrow $$  30$$a$$1 + 15 $$ \times $$ 29d $$-$$ 30 $$a$$1 $$-$$ 420d = 75

$$ \Rightarrow $$  435d $$-$$ 420d = 75

$$ \Rightarrow $$  15d = 75

$$ \Rightarrow $$  d = 5

Given that,

$$a$$5 = 27

$$ \Rightarrow $$  $$a$$1 + 4d = 27

$$ \Rightarrow $$  $$a$$1 + 20 = 27

$$ \Rightarrow $$  $$a$$1 = 7

$$ \therefore $$  $$a$$10 = $$a$$1 + 9d

= 7 + 45

= 52

Comments (0)

Advertisement