JEE MAIN - Mathematics (2019 - 9th January Evening Slot - No. 9)

A data consists of n observations : x1, x2, . . . . . . ., xn.    

If     $$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 1} \right)}^2}} = 9n$$    and

$$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 1} \right)}^2}} = 5n,$$

then the standard deviation of this data is :
2
$$\sqrt 5 $$
5
$$\sqrt 7 $$

Explanation

$$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 1} \right)}^2}} = 9n $$

$$\Rightarrow \sum\limits_{i = 1}^n {x_i^2} + 2\sum\limits_{i = 1}^n {{x_i}} + n = 9n\,\,\,\,\,...\,(1)$$

$$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 1} \right)}^2}} = 5n $$

$$\Rightarrow \sum\limits_{i = 1}^n {x_i^2} - 2\sum\limits_{i = 1}^n {{x_i}} + n = 5n\,\,\,\,\,...\,(2)$$

Performing (1) + (2), we get

$$2\sum\limits_{i = 1}^n {x_i^2} + 2n = 14n$$

$$\sum\limits_{i = 1}^n {x_i^2} = 6n$$

Performing (1) $$-$$ (2), we get

$$ \Rightarrow 4\sum\limits_{i = 1}^n {{x_i}} = 4n$$

$$ \Rightarrow $$$$ \Rightarrow \sum\limits_{i = 1}^n {{x_i}} = n$$

S.D($$\sigma $$)$$ = \sqrt {{{\sum {x_i^2} } \over n} - {{\left( {\overline x } \right)}^2}} $$

$$\sigma $$ $$ = \sqrt {{{6n} \over n} - \left( 1 \right)} $$

$$\sigma $$ $$ = \sqrt 5 $$

Comments (0)

Advertisement