JEE MAIN - Mathematics (2019 - 9th January Evening Slot - No. 24)

If   $$\int\limits_0^{{\pi \over 3}} {{{\tan \theta } \over {\sqrt {2k\,\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }},\left( {k > 0} \right),$$ then value of k is :
4
$${1 \over 2}$$
1
2

Explanation

$$\int\limits_0^{{\pi \over 3}} {{{\tan \theta } \over {\sqrt {2k\,\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }},\left( {k > 0} \right),$$

$$ \Rightarrow \,\,\int\limits_0^{\pi /3} {{{\tan \theta } \over {\sqrt {2k\sec \theta } }}} \,d\theta = 1 - {1 \over {\sqrt 2 }}\left( {k > 0} \right)$$

$$ \Rightarrow \,\,{1 \over {\sqrt {2k} }}\left( { - 2\sqrt {\cos \theta } } \right)_0^{\pi /3} = 1 - {1 \over {\sqrt 2 }}$$

$$ \Rightarrow \,\,{1 \over {\sqrt {2k} }}\left( { - \sqrt 2 + 2} \right) = 1 - {1 \over {\sqrt 2 }}$$

$$ \Rightarrow \,\,{{\sqrt 2 \left( {\sqrt 2 - 1} \right)} \over {\sqrt {2k} }} = {{\sqrt 2 - 1} \over {\sqrt 2 }}$$

$$ \Rightarrow \,\,k = 2$$

Comments (0)

Advertisement