JEE MAIN - Mathematics (2019 - 9th January Evening Slot - No. 21)

Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$.
If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
$$\sqrt {32} $$
6
$$\sqrt {22} $$
4

Explanation

Projection of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$

$$ \therefore $$   $${{\overrightarrow b \cdot \overrightarrow a } \over {\left| {\overrightarrow a } \right|}} = \left| {\overrightarrow a } \right|$$

$$ \Rightarrow $$  $${{{b_1} + {b_2} + 2} \over 2} = 2$$

$$ \Rightarrow $$  $${b_1} + {b_2} = 2\,\,\,\,\,\,\,\,\,\,\,....(1)$$

and $$\overrightarrow a $$ + $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$

$$ \Rightarrow $$  $$\left( {\overrightarrow a + \overrightarrow b } \right) \cdot \overrightarrow c = 0$$

$$ \Rightarrow $$  $$5\left( {{b_1} + 1} \right) + \left( {{b_2} + 1} \right) + \sqrt 2 \left( {2\sqrt 2 } \right) = 0$$

$$ \Rightarrow $$  $$5{b_1} + {b_2} + 10 = 0\,\,\,\,\,\,\,\,\,\,......(2)$$

solving (1) & (2)

b1 $$=$$ $$-$$ 3 and b2 $$=$$ 5

$$ \Rightarrow $$  $$\left| {\overrightarrow b } \right| = \sqrt {9 + 25 + 2} = 6$$

Comments (0)

Advertisement