JEE MAIN - Mathematics (2019 - 9th April Morning Slot - No. 6)
Let $$\overrightarrow \alpha = 3\widehat i + \widehat j$$ and $$\overrightarrow \beta = 2\widehat i - \widehat j + 3 \widehat k$$
. If $$\overrightarrow \beta = {\overrightarrow \beta _1} - \overrightarrow {{\beta _2}} $$,
where $${\overrightarrow \beta _1}$$
is parallel to $$\overrightarrow \alpha $$ and $$\overrightarrow {{\beta _2}} $$
is perpendicular
to $$\overrightarrow \alpha $$ , then $${\overrightarrow \beta _1} \times \overrightarrow {{\beta _2}} $$
is equal to
$$ 3\widehat i - 9\widehat j - 5\widehat k$$
$${1 \over 2}$$($$ - 3\widehat i + 9\widehat j + 5\widehat k$$)
$$ - 3\widehat i + 9\widehat j + 5\widehat k$$
$${1 \over 2}$$($$ 3\widehat i - 9\widehat j + 5\widehat k$$)
Explanation
Given $$\overrightarrow \alpha = 3\widehat i + \widehat j$$
$$\overrightarrow \beta = 2\widehat i - \widehat j + 3 \widehat k$$
$${\overrightarrow \beta _1}$$ is parallel to $$\overrightarrow \alpha $$
$$ \therefore $$ $${\overrightarrow \beta _1}$$ = $$\lambda $$ $$\overrightarrow \alpha$$
$$ \Rightarrow $$ $${\overrightarrow \beta _1}$$ = $$3\lambda \widehat i + \lambda \widehat j$$
$$\overrightarrow {{\beta _2}} $$ is perpendicular to $$\overrightarrow \alpha $$
$$\overrightarrow {{\beta _2}} $$ . $$\overrightarrow \alpha$$ = 0
Let $$\overrightarrow {{\beta _2}} $$ = $$x\widehat i + y\widehat j + z\widehat k$$
$$ \therefore $$ ($$x\widehat i + y\widehat j + z\widehat k$$).($$3\widehat i + \widehat j$$) = 0
$$ \Rightarrow $$ 3x + y = 0
$$ \Rightarrow $$ y = -3x
$$ \therefore $$ $$\overrightarrow {{\beta _2}} $$ = $$x\widehat i -3x\widehat j + z\widehat k$$
Given $$\overrightarrow \beta = {\overrightarrow \beta _1} - \overrightarrow {{\beta _2}} $$
$$ \Rightarrow $$ $$(2\widehat i - \widehat j + 3 \widehat k$$) = ($$3\lambda \widehat i + \lambda \widehat j$$) - ($$x\widehat i -3x\widehat j + z\widehat k$$)
= $$\left( {3\lambda - x} \right)\widehat i + \left( {\lambda + 3x} \right)\widehat j - z\widehat k$$
$$ \therefore $$ 3$$\lambda $$ - x = 2 ...(1)
$$\lambda $$ + 3x = -1.....(2)
z = -3
Solving (1) and (2), we get
$$\lambda $$ = $${1 \over 2}$$ and x = $$-{1 \over 2}$$
$$ \therefore $$ $${\overrightarrow \beta _1}$$ = $${3 \over 2}\widehat i + {1 \over 2}\widehat j$$
and $$\overrightarrow {{\beta _2}} $$ = $$ - {1 \over 2}\widehat i + {3 \over 2}\widehat j - 3\widehat k$$
$${\overrightarrow \beta _1} \times {\overrightarrow \beta _2} = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr {{3 \over 2}} & {{1 \over 2}} & 0 \cr { - {1 \over 2}} & {{3 \over 2}} & { - 3} \cr } } \right|$$
= $${1 \over 2}$$($$ - 3\widehat i + 9\widehat j + 5\widehat k$$)
$$\overrightarrow \beta = 2\widehat i - \widehat j + 3 \widehat k$$
$${\overrightarrow \beta _1}$$ is parallel to $$\overrightarrow \alpha $$
$$ \therefore $$ $${\overrightarrow \beta _1}$$ = $$\lambda $$ $$\overrightarrow \alpha$$
$$ \Rightarrow $$ $${\overrightarrow \beta _1}$$ = $$3\lambda \widehat i + \lambda \widehat j$$
$$\overrightarrow {{\beta _2}} $$ is perpendicular to $$\overrightarrow \alpha $$
$$\overrightarrow {{\beta _2}} $$ . $$\overrightarrow \alpha$$ = 0
Let $$\overrightarrow {{\beta _2}} $$ = $$x\widehat i + y\widehat j + z\widehat k$$
$$ \therefore $$ ($$x\widehat i + y\widehat j + z\widehat k$$).($$3\widehat i + \widehat j$$) = 0
$$ \Rightarrow $$ 3x + y = 0
$$ \Rightarrow $$ y = -3x
$$ \therefore $$ $$\overrightarrow {{\beta _2}} $$ = $$x\widehat i -3x\widehat j + z\widehat k$$
Given $$\overrightarrow \beta = {\overrightarrow \beta _1} - \overrightarrow {{\beta _2}} $$
$$ \Rightarrow $$ $$(2\widehat i - \widehat j + 3 \widehat k$$) = ($$3\lambda \widehat i + \lambda \widehat j$$) - ($$x\widehat i -3x\widehat j + z\widehat k$$)
= $$\left( {3\lambda - x} \right)\widehat i + \left( {\lambda + 3x} \right)\widehat j - z\widehat k$$
$$ \therefore $$ 3$$\lambda $$ - x = 2 ...(1)
$$\lambda $$ + 3x = -1.....(2)
z = -3
Solving (1) and (2), we get
$$\lambda $$ = $${1 \over 2}$$ and x = $$-{1 \over 2}$$
$$ \therefore $$ $${\overrightarrow \beta _1}$$ = $${3 \over 2}\widehat i + {1 \over 2}\widehat j$$
and $$\overrightarrow {{\beta _2}} $$ = $$ - {1 \over 2}\widehat i + {3 \over 2}\widehat j - 3\widehat k$$
$${\overrightarrow \beta _1} \times {\overrightarrow \beta _2} = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr {{3 \over 2}} & {{1 \over 2}} & 0 \cr { - {1 \over 2}} & {{3 \over 2}} & { - 3} \cr } } \right|$$
= $${1 \over 2}$$($$ - 3\widehat i + 9\widehat j + 5\widehat k$$)
Comments (0)
