JEE MAIN - Mathematics (2019 - 9th April Morning Slot - No. 12)

The value of cos210° – cos10°cos50° + cos250° is
$${3 \over 2} + \cos {20^o}$$
$${3 \over 4}$$
$${3 \over 2}(1 + \cos {20^o})$$
$${3 \over 2}$$

Explanation

cos210° – cos10°cos50° + cos250°

= $${1 \over 2}$$[ 2cos210° – 2cos10°cos50° + 2cos250°]

= $${1 \over 2}$$[ 1 + cos20° - cos60° - cos40° + 1 + cos100°]

= $${1 \over 2}$$[ 2 - $${1 \over 2}$$ + cos20° + cos100° - cos40°]

= $${1 \over 2}$$[ $${3 \over 2}$$ + 2cos60°cos40° - cos40°]

= $${1 \over 2}$$[ $${3 \over 2}$$ + cos40° - cos40°]

= $${3 \over 4}$$

Comments (0)

Advertisement