JEE MAIN - Mathematics (2019 - 9th April Morning Slot - No. 11)

If the function ƒ defined on , $$\left( {{\pi \over 6},{\pi \over 3}} \right)$$ by $$$f(x) = \left\{ {\matrix{ {{{\sqrt 2 {\mathop{\rm cosx}\nolimits} - 1} \over {\cot x - 1}},} & {x \ne {\pi \over 4}} \cr {k,} & {x = {\pi \over 4}} \cr } } \right.$$$ is continuous, then k is equal to
1
1 / $$\sqrt 2$$
$${1 \over 2}$$
2

Explanation

$$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\sqrt 2 \cos x - 1} \over {\cot x - 1}}$$ = f($${{\pi \over 4}}$$) = k

$$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{\sqrt 2 \cos x - 1} \over {\cot x - 1}}$$ ($${0 \over 0}$$ form) = k

$$ \Rightarrow $$ $$\mathop {\lim }\limits_{x \to {\pi \over 4}} {{ - \sqrt 2 \sin x} \over {-\cos e{c^2}x}}$$ (Using L Hospital Rule)

$$ \Rightarrow $$ $$\mathop {\lim }\limits_{x \to {\pi \over 4}} \sqrt 2 {\sin ^3}x$$ = k

$$ \Rightarrow $$ k = $$\sqrt 2 {\left( {{1 \over {\sqrt 2 }}} \right)^3}$$ = $${1 \over 2}$$

Comments (0)

Advertisement