JEE MAIN - Mathematics (2019 - 9th April Morning Slot - No. 10)

If one end of a focal chord of the parabola, y2 = 16x is at (1, 4), then the length of this focal chord is :
24
20
25
22

Explanation


For this parabola y2 = 16x,

a = 4

Here PQ is focal cord.

Let P(at12, 2at1) and Q(at22, 2at2).

Given P(1, 4),

$$ \therefore $$ at12 = 1

$$ \Rightarrow $$ 4t12 = 1

$$ \Rightarrow $$ t12 = $${1 \over 4}$$

$$ \Rightarrow $$ t1 = $${1 \over 2}$$

In parabola if the parameter of one end point of the focal cord is t1 then parameter of the other end point t2 = $$ - {1 \over {{t_1}}}$$

Here parameter for point Q t2 = - 2

$$ \therefore $$ Length of focal cord

|PQ| = a$${\left( {{t_1} - {t_2}} \right)^2}$$ = 4$${\left( {{1 \over 2} + 2} \right)^2}$$ = 25

Comments (0)

Advertisement