JEE MAIN - Mathematics (2019 - 9th April Morning Slot - No. 10)
If one end of a focal chord of the parabola,
y2 = 16x is at (1, 4), then the length of this focal
chord is :
24
20
25
22
Explanation
_9th_April_Morning_Slot_en_10_2.png)
For this parabola y2 = 16x,
a = 4
Here PQ is focal cord.
Let P(at12, 2at1) and Q(at22, 2at2).
Given P(1, 4),
$$ \therefore $$ at12 = 1
$$ \Rightarrow $$ 4t12 = 1
$$ \Rightarrow $$ t12 = $${1 \over 4}$$
$$ \Rightarrow $$ t1 = $${1 \over 2}$$
In parabola if the parameter of one end point of the focal cord is t1 then parameter of the other end point t2 = $$ - {1 \over {{t_1}}}$$
Here parameter for point Q t2 = - 2
$$ \therefore $$ Length of focal cord
|PQ| = a$${\left( {{t_1} - {t_2}} \right)^2}$$ = 4$${\left( {{1 \over 2} + 2} \right)^2}$$ = 25
Comments (0)
